
 993

MODELLINGSPACE: INTERACTION DESIGN AND
ARCHITECTURE OF A COLLABORATIVE MODELLING

ENVIRONMENT

Nikolaos Avouris, Meletis Margaritis, Vassilis Komis, Angel Saez, Ruth Meléndez

ABSTRACT
This paper describes the architecture of the ModelllingSpace open problem-solving environment. Modelling-
Space is a new learning environment supporting synchronous and asynchronous collaborative problem solving by
students at a distance. We describe here the key design decisions of the ModellingSpace software and in
particular issues related with support for students with heterogeneous sets of primitive entities, control of
interaction and dialogue, representation of the entities and models in a format that permits exchange of primitive
material, as well as architectural considerations of the distributed application relating to network bandwidth
limitations. The paper provides also an outline of server-side tools designed for supporting a community of
students, users of the ModellingSpace environment.

KEYWORDS
Collaborative learning, computer-supported collaborative problem solving, synchronous collaborative software,
groupware

INTRODUCTION

ModellingSpace is an open learning environment that supports real-time and asynchronous
collaboration of small groups of students engaged in problem solving. This environment has been
designed and built, based on experience with existing previous tools, like ModelsCreator 2.0 (Komis et
al., 2001), which have been used in the past for teaching multi-disciplinary science subjects in various
educational settings, see Komis et al. (2002), Fidas et al. (2002b), Margaritis et al. (2003). The
architecture of the ModellingSpace distributed environment is presented in this paper. In particular we
discuss issues related to interaction design, support for students with heterogeneous sets of primitive
entities, control of interaction and coordination mechanisms built, as well as architectural
considerations of the distributed computing limitations. The paper provides also an outline of the
server-side tools designed for supporting a community of students, users of the ModellingSpace
environment. A number of evaluation studies of the early prototypes have taken place recently in which
pupils and teachers of Greek High Schools and undergraduate University students have participated,
while more experimental use of software prototypes is in progress; see Margaritis et al. (2003). The
main concept of ModellingSpace development has been based on experience with existing previous
tools, developed during recent years and tested in the field. The functionality of these original tools has
been enhanced and re-implemented. In addition, new tools have been developed and integrated in the
new ModellingSpace environment, related to analysis of collaboration and problem solving, discussed
in Avouris et al. (2003b).

MODELLINGSPACE DESIGN

This section presents the main aspects of the architecture of the ModellingSpace (MS) system together
with the main technological decisions of the system that has been developed.

 994

Understanding

model

participant participant

Control and
feedback

feedthrough

Direct
Communication (chat messages)

Deixis

MS is a software environment that supports individual and collaborative building of various kinds of
models. It includes tools that permit building and editing of primitive entities, building and exploring
models that are made of primitive entities, synchronous and asynchronous interaction of students,
collocated or at a distance, who collaborate in building models out of primitive entities and tools that
support analysis of modelling activities. The open character of MS means that students have access to
an open set of primitive entities that can be used for building these models.

Key design decisions
The main decisions concerning the architecture are related to the development of the synchronous and
asynchronous collaboration functionality, as well as the integration of the meta-cognitive analysis tools
in the architecture. The decisions related to the architecture of the stand-alone modelling tools (Models
editor and Entities editor) are based in some extent on existing ModelsCreator functionality and design.
Synchronous and asynchronous collaboration for modelling is a case of computer supported
collaboration based on the concept of shared artefact represented in a work surface (Dix et al., 1998). In
contrary to other collaboration applications in which emphasis is in communication (meeting support,
argumentation tools, decision making etc.) in this case the distant partners collaborate mainly by
sharing the model in the asynchronous collaboration mode and act on a shared work surface in the case
of the synchronous collaboration mode. Our case is similar to collaboration support environments
involving development of artefacts, like shared text editors, collaborative design environments etc, in
which the partners share the view over the artefact to be developed, which thus becomes a cognitive
space. A key requirement is therefore to create infrastructure for sharing a view of the model in
synchronous modelling activities and additionally support direct communication among the
participants. In figure 1 the notion of feed-through the artefact is shown, where one participant's
manipulation of shared objects can be observed by the other participants. This communication through
the artefact can be as important as direct communication between participants, as observed in Avouris
et al. (2003a) and Fidas et al. (2002). Finally the size of the group of collaborating partners and the
setting of collaboration in terms of technical specifications of equipment to be used (e.g. network
bandwidth) and location of participants are essential characteristics of the problem to determine the
architecture.

Figure 1. Collaborative-modelling framework

Direct Communication
Various architectural decisions are related to this framework. Considering that the collaborative activity
is done mainly between partners at a distance the direct communication mechanism has to be defined.
The alternative options have been (Preece et al., 2002):
• Voice communication (video phones, video conferencing, media spaces)
• Text-based communication (instant messaging, collaborative virtual environments (CVEs), chat

rooms)

 995

From these two alternatives the second one has been selected for a number of reasons. Video does not
seem to bring any benefit in this context, taking in consideration the current serious limitations of
videoconferencing systems (Preece et al., 2002). Additional problems with audio are: logging of voice
and transferring it in text form, necessary for meta-analysis and classification of events, is a technically
difficult task, there is lack of adequate bandwidth for voice and video communication in most school
environments. Also voice or video necessitate use of special equipment, often not available in school
lab workstations. In addition, difficulty with distinguishing the identity of the speaker from a group
through his/her voice has been reported in various studies.

On the other hand, use of typed messages through instant messaging technology seems to have certain
advantages. Transmission of text messages can be done through low bandwidth connections. Students
of typical age group of ModellingSpace users (10-16) seem to have developed strong typing skills and
instant messaging use habits, since they are frequent users of this technology through various media
(SMSs, chatrooms etc.). Finally, the implementation of structured dialogue techniques, through use of
dialogue opening options in a chat tool is easy in this case. In addition, if voice communication needs to
be used, this can be done using tools external to the MS environment (e.g. voice over IP or telephone
connection), especially since such services are made gradually available to schools.

Shared activity space design
One important decision is related to the design of the shared activity space. According to Suthers (2001)
the degree of coupling between the activities of different users and the state of applications used by
those users can vary. The alternatives according to Suthers are:
• Strict WYSIWIS (what you see is what I see). of the activity in the workspace of coordination,

provides all users with exactly the same view and controller states. Strict WYSIWIS can support
effectively the collaboration of two to three users whose activities are tightly coupled. An example
of such environment is NetMeeting.

• Relaxed WYSIWIS does not insist that the state of the view be exactly the same, so different users
can scroll to different viewpoints and perform their own operations, such as moving objects, until a
model change forces an update in the view

• Model level coupling, guarantees that the partners share the same model but the view might be
entirely different, for example one can view the model as a graph, or run a simulation of the model
independently of the others.

From the requirements of ModellingSpace a mixture of alternatives is provided. A strict WYSIWIS is
allowed in the main model-editing window. We believe that activity in this area should be faithfully
reproduced in all participants' workstations. This is because most of communication and reasoning is
based on this shared viewpoint, which becomes the main grounding mechanism of dialogue and through
which eventually common understanding can occur. Deviation from this results in confusion of partners
since misunderstandings can be generated due to different views when partners are allowed to scroll to
different viewpoints, while no strong coupling of the shared view and the direct communication can be
achieved. However all additional operations outside this shared workspace, e.g. relating to browsing of
themes of study, saving of the model and running graph tools with alternative representations of the
built model, are performed independently by partners involved (a model level coupling approach
according to Suthers(2001).

A consequence of this design decision can be that high volume of information may be transmitted to
participating peers due to the strict WYSIWIS of the shared workspace requirement. A possible solution
to this problem is to use replication of the environment in all workstations and synchronization of the
workstations states through control messages. This approach has also been suggested by MatchMaker
(Tewissen, 2000), Belvedere (Suthers, et al., 1997) Habanero (Chabert et al., 1998), E-slate (Koutlis et
al., 1998) etc.

Even this solution however is not satisfactory for an open environment, like ModellingSpace. In our
case the models building blocks, i.e. primitive entities (containing often large collections of image files)

 996

can differ in peers’ workstations. This is due to changes that can occur even during modelling activity,
as new primitive entities may be imported from the common repository or received through
asynchronous interaction. So in case that a primitive entity is used by one of the partners during
modelling, a need arises to transmit possibly large multimedia files to collaborating peers in order to
synchronize the peer applications. This can create disruption in smooth collaboration to all
collaborating partners, see Fidas et al. (2002b).

A solution proposed for this problem is to send only light control messages to the peers (chat and
change of state), including the structure of new primitive entities, while the heavy multimedia files
associated to these entities, if required, are sent through the server directly to the requesting peers,
without creating disruption to the rest of the group. This hybrid protocol is discussed in more detail in
the next section.

Coordination mechanism design
One other important decision is related to the design of a coordination mechanism for the activity in the
shared workspace. In computer-supported collaborative environments, like in face-to-face group
interaction, a mechanism is needed to control the floor in terms of communication and action in the
common activity space. Various alternative coordination mechanisms have been proposed; see Dix et
al. (1998) for a survey and a discussion for alternative approaches. Some of them impose no particular
control, i.e. any member has his/her own pointing device and can manipulate objects in the activity
space or write on the whiteboard. This can create coordination problems with the participants ending up
in writing one on top of the other and cancelling each other’s actions. Other architectures propose floor
control mechanisms, involving the existence of a coordinator, various floor control protocols, like
round-robin etc, or protocols of explicit request and concession of the floor. For instance inactivity of
the floor owner for more than a certain time can release the floor.

In the case of ModellingSpace we propose a coordination mechanism which involves the notion of the
Action Enabling Key, owned by one of the participants at any given time. This key owner can then act
in the shared workspace, while the rest just observe this activity. This mechanism is supported by key
request, key accept, key reject functions. Experiments with this floor control mechanism, see (Fidas et
al., 2000) and (Komis et al., 2002), demonstrate that it improves reasoning about action, as partners
need to reason and negotiate during key requests.

This coordination mechanism in absence of a coordinator is based on a pass-the-key protocol, or in
presence of a coordinator can take the form of any protocol imposed by the coordinator who exercises
authority through this mechanism. This flexibility is suitable for educational environments like
ModellingSpace, where in various settings, educators or researchers wish to use different coordination
procedures.

 997

Figure 2. Overview of the architecture: actors and nodes

OVERVIEW OF MS SYSTEM ARCHITECTURE

Based on the design ratio described above, the ModellingSpace (MS) software is defined. This takes the
form of a suite of interconnected tools to support collaborative modelling learning activities. The main
actors of MS, according to this are the student and the teacher (called learning actors). The latter
incorporates many roles: The coordinator/ facilitator of collaborative modelling, who can remotely or
locally co-ordinate, coach and supervise modelling activities through the relevant supervision tools. The
analyst/researcher who uses the analysis tools in order to study and identify patterns of modelling
learning during modelling activities (in on line or off line mode). The creator of primitive modelling
entities who uses the editor for building new modelling entities. This last role can be played by
advanced students according to the specifications of pedagogical scenarios of use. Additional actor is
the administrator of the community and of the common repository.

There are five main components in the MS distributed environment, which reside in three types of
nodes, the student node, the teacher node and the server node, as shown in figure 2. The main
components are: The Model Editor, the Entity Editor, the Analysis & supervision environment (see
Avouris et al., 2003b), the Common Repository and the Community support environment.

These are briefly presented in the following. There are going to be two different installations of the MS
software, the client that can be used either by teachers (teacher client node in figure 2) or students
(student client node) with different capabilities and the server that is administered by the administrator
and used remotely also by the other actors through their client components. Since the most typical use
of MS is in a school laboratory, and in this case the same workstation could be used by many students
of different classes, the client supports multi-user access, identification and authentication of the user
and user private space. The MS environment is presented in the following as client and server side
tools.

ModelEdit

Synchronous
collaborative

modelling

Entity editing

Community support
service

unstructured data

Student

Teacher/
researcher

Builds/ edits
entities

Common
Repositories
(structured)

Registers
logs in

Imports exports
models/ entities/ libraries

Student
client node

Server
node

analysis &
supervising
tools

Off-line
analysis

Teacher client
node

Asynchronous
collaboration

Entities –
models
library administrator

Other
students

Supervises and
coordinates

Builds/
edits

models

Users/
Schools/
Groups

Management

Entity editing Entities –
models
library

Repositories
Management

 998

CLIENT SIDE TOOLS

Model Editor
The main tool is the ModelEditor (ME), which is accessible by both the teacher and the student. This is
a direct manipulation space, which is expected to be used mostly by students for building models out of
primitive modelling entities. ME supports building of different kinds of models mostly for students of
11-16 years. The ME needs to support building of dynamic models, i.e. models that simulate a
behaviour to the user. These can be either semi-quantitative models, i.e. models in which the entities are
related by semi-quantitative relations or quantitative models, where the relations can be mathematical
expressions. Also static qualitative models (concept maps), can be built using this environment.
Emphasis has been given so far on semi-quantitative modelling and reasoning, as this has been the main
innovation of the ModelsCreator environment, (see Komis et al., 2001).

The ME puts great emphasis on visualisation of the modelling entities, their properties and their
relations, supporting the reasoning development of young students (NCTM 2000). This feature is
extended also to the simulation of executable models allowing their validation through representation of
the phenomenon itself in a visual way.

The activity space of the ME modelling environment needs to be shared by multiple actors, permitting
collaborative modelling activities of learning actors at a distance. The size of the groups engaged in
synchronous collaboration is expected to be small, so point-to-point connection is feasible. The
messages exchanged are of small size, as due to replication the only information exchanged relates to
control of modelling activities (e.g. add entity Ex to the (x,y)), while the entity Ex itself is not usually
transferred between the distant nodes, as discussed in more detail below. Alternative views of a model
are supported. A model can be seen as a network of entities and relations, which is the normal view as
build in the activity space, or as a table of values, a graph or a bar chart, presenting specific relations
and properties of the model in new windows.

Figure 3. The model editor (ME) environment

The ME is designed to be a user-sensitive environment, providing different functionality to different
actors. So the teachers can use the tool for supervising simultaneously many groups of students, and

Model
manipulation
buttons

Model run
buttons

Libraries of
entities

Relations

Model creation
and testing area

Collaboration tools Themes of study
management

Graph, bar chart
and table of
values tools

 999

share many collaboration windows, while special permissions are allocated to them in relation to
coordination of collaboration, access to libraries of entities and management of student accounts, as
discussed in more detail in the following.

Entities Editor
A second tool of the client node is the Entities editor (EE). This tool is used typically by the teacher or
advanced student in order to create primitive entities, which can be stored in the local Entities Libraries
or send to the server Common Repository. The entities are the building blocks of the models. Each
entity is defined as an object, representing an object or a concept of the real world that has a name, a
text description and a graphical representation. A number of properties can be associated to an entity
through this tool. For instance the Entity Plant can have the properties Growth, Energy, Food_intake in
the context of a photosynthesis model.

There are entities that can have more abstract meaning (variables) which have no properties associated.
The properties in general have a range of values that they can take; while for each property the min,
max and default value is defined. The entity is associated to a number of states. Each state corresponds
to a distinct range of values of the entity’s properties. An iconic representation of the entity is associate
to each one of these states, see figure 4.

Figure 4. An example of an entity definition, the property light of the entity sun is associated to 6 states
and corresponding iconic representations. On the right the state image assignment tool is shown. Two

properties have been defined; their states and images have been associated to the produced entity states

Various image formats can be used as entity representations. A generated entity by the tool is
represented by a data structure defining the entity properties, states, etc. and a number of associated
image files. An XML representation of the entity can be produced, along with binary compressed
representations for storing locally. The user can define as many entity properties and states as he/she
wishes, however special attention should be paid on the size of the final entity, which in case of
complex entities can be quite large, depending on the image format and number of distinct associated
images.

MS is an open environment. The importance of this open character on collaborative modelling and the
implications on the architecture should be briefly discussed. In a typical closed collaborative problem-
solving environment, the students have at their disposal a common set of basic constitutive abstract
primary entities, out of which they construct their representations. These primitives can be rectangles,
ellipses, squares, different statement types, etc., as it is the case in Belvedere (Suthers and Jones 1997),
COLER (Constantino and Suthers, 2001), C-CHENE (Baker and Lund, 1997), Modeller Tool (Koch et
al., 2001), etc. So common understanding is based on the existence of these common basic primitives.
On the contrary, in an open system like MS, one user before entering in a specific collaborative session
may possess a different set of primitive elements to this of her peer. As a result diverse sets of primitive
objects can be found in the client local libraries and the server repositories. These objects are
represented through XML a structured data interchange protocol approach, which permits association of

Light=2

Sun.light 0 1 2 3 4 5

sun

Light=2

Sun.light 0 1 2 3 4 5

sun

property states

images

entity states

 1000

semantic meaning and syntactic validation. In this a GUID is used representing the unique identity of an
entity, which is generated by an algorithm as a combination of creation time, unique workstation and
user identity at entity creation time.

Communication protocol
Synchronization of collaborating partners is achieved using a peer-to-peer protocol, without
intervention of a server. The mechanism is based on a set of reactive agents, which try to achieve
synchronization with the corresponding agents of the peer host based on a stimulus–response model. So
in a joint problem solving activity each object and each relation introduced, act as reactive agents. The
behaviour of each agent depends on whether it is on the active user’s side or on the passive user’s side.
If it is on the active user’s side it monitors user events that are related to the particular object
(movement, changing of properties, deleting etc.), and sends these events to the equivalent agent on the
passive user’s side. This is achieved through the Mediators, shown in figure 5. When the Mediator of
the passive user's side receives the message, it decodes it and informs the equivalent agent who acts
accordingly.

This necessitates that the objects present in the Activity Spaces of two collaborating partners are
identical. However, as discussed earlier, there is a possibility that two users are in possession of
different primitive library objects, due to the open architecture of the environment. So there can be a
case when the active user A adds an object into the shared activity space, which does not exist in the
library of user B. In this case it is necessary to update the library of user B at run time with the missing
object before proceeding any further. This is done transparently from the users as follows: When user A
inserts the new object Oi in the Activity Space, Mediator A informs Mediator B about the addition of
the new object, sending the appropriate message with the object’s GUID. Mediator B searches the local
Entity Library for Oi If this object does not exist on host B then Mediator B asks A to send a copy of
object Oi before proceeding any further. Mediator A sends the object, and waits. During this activity the
user actions in the shared Activity Space are suspended and a message is displayed that the peer library
is updated. After the sending is complete Mediator B informs Mediator A that it has received the object
and the activity can proceed. The object icons can be sent either directly as shown in figure 5 or through
the server if the size of the multimedia files are too large and can disrupt activity for both partners for
too long. In the latter case the message is sent to the server with the GUID of the object, and the
partners download the object from the corresponding repository in the server (as it is described in the
following section the common repository is organised in many different ones, and not all users have
access to all repositories). A process has been designed to look for the entity in the repositories to which
the user has access. In case that the material is not found in the public repository, but in a restricted one
to which the first user has access but not the rest, a copy of the entity is made in the user’s exchange
tray and it is from there, where the other users are allowed to pick it up). If the object does not exist in
the server, it is uploaded, transparent to the two users from the library of user A.

Figure 5. The communication protocol interaction diagram

 1001

SERVER SIDE TOOLS

As discussed in the previous sections, the MS architecture is based on a thick client component, which
contains a number of interoperable tools. Even synchronous collaboration is effected through peer-to-
peer interaction. However the proposed architecture contains also a server node which offers the
following services: (a) management of the repositories; (b) management of users and schools; (c)
management of collaboration groups; and (d) support of peer-to-peer collaboration. Many issues related
to security and asynchronous interaction can be solved through this server, as proposed by many
collaboration support systems, e.g. see Heibinger (2001) and Constantini et al. (2001).

(a) Management of the repositories. The management of the repositories is deeply linked with the
management of the users and the management of groups. The different kinds of repositories that exist in
the server are the following: the public repository; the personal repositories; the exchange trays; and
the group repositories.

The Public Repository is the main repository of the ModellingSpace server. Material stored there is
available for all users, but only teachers have permission to upload entities, models, themes of study,
since only correct models, and useful material should be stored in this repository. Therefore when a
student wants to upload material to this repository, the material needs to be validated by a teacher.
Each user has a Personal Repository, which no other users can access, and an Exchange Tray,
accessible also to other users, which is used as a secure way to exchange documents. These two kinds
of repositories are automatically created in the server when the administrator enrols a new user, and
they disappear when the user is deleted from the system.
To the groups repositories only members of the group have access. Thus with the term common
repository, we mean a set of repositories that exist in the server.

(b) Management of users and schools: Only the administrator can add new schools or new users to the
server, and when a new user is added, two new repositories are automatically created: a personal
repository and an exchange tray.

(c) Management of collaboration groups: If the concept of a group is understood as a set of users who
are collaborating in the construction of a new model, two kind of groups can be distinguished: when
users are collaborating on-line and off-line. Collaboration means the shearing of knowledge, work and
material, so groups need special repositories to which only their members can access. Therefore at the
same time that a group is created a group repository is also created, and the management of these two
kinds of groups is not done in the same way. Permanent groups need to be created by an administrator
indicating whether the group is moderated or not; restricted or not (that is if there is a maximum number
of members allowed); etc., whereas collaboration groups are automatically created when two users start
on-line collaboration.

In both cases the life of the group repository depends on the life of the group: it appears when the group
is created and once the group is deleted (in the case of the permanent ones) or the on-line collaboration
ends (in the case of the collaboration groups), the group repository is also deleted from the server.

 1002

Figure 6. The user registration and the search learning material server interfaces

(c) Support of peer-to-peer collaboration. The role of the server in the peer-to-peer collaboration has
already been described in the Communication Protocol section. Additional functionality of the server
involves tracking of physical address of users, who might not have a permanent IP address, and
information on presence support, i.e. inform users on availability of their peers for synchronous
interaction. Finally, these Community Support Tools provide also other services like session
management, login of users, etc.
An interface to the server repository has been built through which one can download material in the
Common Repository (CR) or any of the other private repositories to which the user has access to, as
shown in figure 6.

CONCLUSIONS

The main functionalities of the ModellingSpace architecture are:
(a) MS is an environment in which models of various kinds can be built and explored, made out of
primitive entities, making it an environment particularly suitable for science education.
(b) The users, students or teachers, are able to create, store in and retrieve from local or common
repositories primitive entities and models
(c) Services are provided for supporting creation and maintenance of the activities of virtual
communities of students of different schools who use ModellingSpace through the server.
(d) The teachers who use MS are able to supervise single students or groups of students engaged in
modelling activities in the same place (school lab) or from a distance
(e) Asynchronous collaboration of students engaged in modelling activities are supported through
community tools
(f) Synchronous collaboration of small groups of students, engaged in modelling activities, are also
supported, through a shared activity space and a text communication tool.
The above functionalities are now tested through a number of field studies, e.g. Margaritis et al. (2003),
Avouris et al. (2003b), through which the effectiveness of the presented architecture is evaluated.

ACKNOWLEDGEMENT

The reported work has been performed in the frame of the IST-School of Tomorrow Project IST-2000-
25385 “ModellingSpace”. In this project participate the University of the Aegean, (GR), the University
of Patras (GR), the University of Mons-Hainaut (B), the New University of Lisbon (PT), the University
of Angers (F) and SchlumbergerSema (SP).

 1003

REFERENCES

Avouris N.M., Dimitracopoulou A., Komis V., (2003a), On analysis of collaborative problem solving:
An object-oriented approach, J. of Human Behavior Vol. 19, Issue 2, March 2003, pp. 147-167.

N. Avouris, V. Komis, G. Fiotakis, M. Margaritis, N. Tselios (2003b), Tools for Interaction and
Collaboration Analysis of learning activities, Proc. 6th CBLIS 2003, Nicosia.

Baker M.J., de Vries E., Lund K. & Quignard M (2001) Computer Epistemic Interactions for co-
constructing scientific notions: Lessons Learned from a five-years research program, Proc. 1st
EuroCSCL 2001, pp.89-96.

Baker, M.J. & Lund K. (1997) Promoting reflective interactions in a computer –supported collaborative
learning environment. Journal in Computer Assisted Learning, 13, 175-193.

Chabert A., Grossman E., Jackson L., Pietrowicz S. Seguin C., (1998), Java Object-Sharing in
Habanero, Com. ACM, 41 (6), pp. 69-76.

Constantini F., Toinard C., (2001), Collaborative Learning with the Distributed Building Site
Metaphore, IEEE Multimedia, July-Sept. 2001, pp. 21-29.

Constantino-Conzalez & Suthers D. (2001), Coaching Collaboration by Comparing Solutions and
Tracking Participation. 1st EuroCSCL 2001, pp.173-180.

Dix A., Finlay J., Abowd G, Beale R., (1998), Human-Computer Interaction, 2nd Edition, Prentice
Hall.

Fidas C., Komis V., Avouris N.M. (2001). Design of collaboration-support tools for group problem
solving, Proceedings PC HCI 2001, pp. 263-268, Typorama Pub., December 2001, Patras, Greece.

Fidas C., Komis V., Avouris N.M., Dimitracopoulou A., (2002a), Collaborative Problem solving using
an Open Modelling Environment, Proc. CSCL 2002, pp. 654-656, Erlbaum Assooc, Hillsdale NJ, 2002.

Fidas C., Komis V., Tzanavaris S., Avouris N., (2002b), Heterogeneity of learning material in
synchronous computer-supported collaborative modelling, Computers and Education (submitted)

Koch J.H., Schlichter J. & Trondle P (2001). Munics: Modeling the flow of Information in
Organisation. 1st EuroCSCL 2001, pp.348-355.

Komis V., Avouris N., Fidas C., (2002), Computer-supported collaborative concept mapping: Study of
synchronous peer interaction, Education and Information Technologies vol.7, 2, pp.169-188.

Komis V., Dimitracopoulou A., Politis P., Avouris N. (2001). Expérimentations exploratoires sur
l’utilisation d’un environnement informatique de modélisation par petits groupes d’élèves, Sciences et
Techniques Educatives, Vol. 8, no 1-2, pp.75-86.

Koutlis E. (1998) E slate specification, see www.eslate.cti.gr

Margaritis M., Avouris N., Komis V., (2003) The architecture and evaluation of a collaborative learning
environment, 6th CBLIS, Nicosia 2003.

National Council of Teachers of Mathematics. (2000). Principles and standards for school Mathematics.
Reston,VA: NCTM.

 1004

Preece J, Rogers Y, Sharp H., (2002), Interaction Design beyond human-computer interaction, Willey
and Sons.

Suthers D. & Jones D. (1997), An Architecture for Intelligent Collaborative Educational Systems. In B.
du Boulay, R. Mizoguchi (Eds) 8th World Conference on Artificial Intelligence in Education
(AIED’97), pp. 55-62.

Suthers, D.D., (2001), Architectures for Computer Supported Collaborative Learning, Proc. IEEE int.
Conf. On Advanced Learning Technologies, ICALT 2001, Madison, Wisconsin

Tewissen, F., Baloian N., Hopper U., Reimberg E. (2000), Match Maker synchronizing objects in
Replicated Software Architectures, Proc., 6th CRIWG, Madeira.

Professor Nikolaos Avouris
ECE Dept. Human-Computer Interaction Group
University of Patras
GR-26500 Rio - Patras
Greece (www.ee.upatras.gr/hci)
E-mail: N.Avouris@ee.upatras.gr

Meletis Margaritis
ECE Dept. Human-Computer Interaction Group
University of Patras
GR-26500 Rio - Patras
Greece
E-mail: Margaritis@ee.upatras.gr

Asst. Professor Vassilis Komis
Early Childhood Education Dept.
University of Patras
GR-26500 Rio - Patras
Greece
E-mail: komis@upatras.gr

Angel Saez
SchlumbergerSema
Albarracin 25
E-28037 Madrid
Spain
E-mail: angel.saez@madrid.sema.slb.com

Dr. Ruth Melendez
SchlumbergerSema
Albarracin 25
E-28037 Madrid
Spain
E-mail: ruth.Melendez@madrid.sema.slb.com

