
Path-based MXML Storage
and Querying

Nikolaos Fousteris 1 , Manolis Gergatsoulis 1 , Yannis Stavrakas 2

2 Institute for the Management
of Information Systems (IMIS),

R. C. Athena,
G. Mpakou 17, 11524, Athens,Greece.

yannis@inmis.gr

1 Department of Archives and Library Science,
Ionian University

Ioannou Theotoki 72,49100 Corfu, Greece.
{nfouster,manolis}@ionio.gr

2nd Workshop on Digital Information Management April, 25-26, 2012
Corfu, Greece

2

Introduction & Motivation

� The problem of storing and querying XML data
using relational databases has been considered
a lot

� Multidimensional XML is an extension of XML
and it is used for representing data that assume
different facets, having different values or
structure, under different contexts

� We expand the problem of storing and querying
XML to multidimensional XML data

3

Outline

� XML Storage
� Multidimensional XML(MXML)

� Fundamental concepts
� MXML example and graphical representation

� MXML Storage
� A path-based approaches is presented

� Context Representation
� Multidimensional XPath (MXPath)
� MXPath to SQL conversion algorithm
� Summary & Future work

4

XML Storage (1/2)

� Includes techniques to store XML data in
Relational Databases

� XML applications (internet applications)
are able to exploit the advantages of the
RDBMS technology

� Operations over XML data, are
transformed to operations over the
Relational Schema

5

XML Storage (2/2)

� A Relational Schema is chosen for storing XML data
� XML queries are produced by users/applications
� XML queries are translated to SQL queries
� SQL queries are executed
� Results are translated back to XML and returned to the

user/application

� Methodology

� Techniques
� Schema Based
� Schema Oblivious

6

Multidimensional XML (MXML)
Fundamental Concepts (1/3)

� MXML is an extension of XML

� In MXML data assume different facets,
having different value or structure, under
different contexts according to a number of
dimensions which may be applied to
elements and attributes

7

MXML – Fundamental Concepts (2/3)

� Dimension: is a variable. Assigning different
values for each dimension it is possible to
construct different environments for MXML data

� World: represents an environment under which
data obtain a meaning and is determined by
assigning to every dimension a single value

� Context Specifier: an expression which specifies
a set of worlds (context) under which a facet of an
MXML element or attribute, is the holding facet of
this element or attribute

8

MXML – Example

<bookisbn=[edition=english]"0-13-110362-8"[/]
[edition=greek]"0-13-110370-9"[/]>

<title>The C programming language</title>
<authors>

<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>

</authors>
<@publisher>
[edition = english]<publisher>Prentice Hall</publisher>[/]
[edition = greek]<publisher>Klidarithmos</publisher>[/]
</@publisher>
<@translator>
[edition = greek]<translator>Thomas Moraitis</translator>[/]
</@translator>
<@price>

…….

Multidimensional
elements/attributes are
elements/attributes that
have different facets
under different
contexts.

Each multidimensional
element/attribute
contains one or more
facets, called Context
element/attributes.

9

MXML Graphical Representation

10

MXML – Fundamental Concepts (3/3)

� Explicit Context: Is the true context (defined by
a context specifier) only within the boundaries of
a single multidimensional element/attribute.

� Inherited Context: Is the context, which is
inherited from the ancestor nodes to a
descendant node in the MXML graph.

� Inherited Context Coverage: It constraints the
inherited context of a node, so as to contain only
the worlds under which the node has access to
some value node.

11

MXML Storage (1/5)

� MXML storage includes techniques that
store MXML data in Relational Databases.

� Applications using MXML storage are able
to exploit the advantages of the RDBMS
technology.

� MXML additional features (context,
different types of MXML nodes/edges etc.)
should be considered.

12

MXML Storage (2/5)

Path-based Approach

� MXML nodes are divided into groups, according
to their types. Each group is stored in a separate
table named after the type of the nodes
(elements, attributes and value nodes).

� There is a Path Table, which stores all possible
paths of the MXML tree.

� For node indexing, it is used a dotted format of
Dewey-labeling schema.

13

Ex. Node “1.1.2” is the 2nd child of node “1.1” and is placed
at the 3rd level of the MXML tree.

MXML Storage (3/5) Path-based Approach

Dewey-labeling schema

� Used for indexing the nodes of
MXML tree.

� A label is a dotted string
a1.a2.a3…an.

� For each ai (i=1…n), i represents
the depth and ai the position
number of a node among its
siblings.

14

MXML Storage (4/5) Path-based Approach

15

MXML Storage (5/5)

Ex.
XPath : /book//picture

SQL1:
select.. from.. where path LIKE ‘ /book%/picture’

case1: ‘ /book/cover/picture’ (match) correct
case2: ‘ /booklet/cover/picture’ (match) error

SQL2:
select.. from.. where path LIKE ‘#/book#%/picture’

Cases like case2 above could not happen.

Path-based Approach

SQL
wildcard

Path representation

16

Context Representation (1/5)

Question

How can we represent in a Relational Database
the set of worlds which are contained in a context

specifier, for each MXML node?

17

Context Representation (2/5)

Basic idea : Total ordering of worlds based on:

� Total ordering of dimensions

� Total ordering of dimension values

For k dimensions with each dimension i having zi
possible values, we may have n=z1*z2*….*zk

possible ordered worlds.
Each world is assigned a unique integer value

between 1 and n (w1 to wn).

Ordered -Based Representation of Context

18

Context Representation (3/5)

dimensions ordering

dimension values
ordering

possible worlds
ordering

Ordered-Based Representation of Context

19

Context Representation (4/5)

World Vector :
� A binary number representing a context
specifier. The position of every bit
corresponds to the position of a world
in the total ordering of all possible worlds.

� Each bit of the world vector has two
possible values: 1 if the corresponding
world exists in context specifier or 0 if it does not)

binary digit for Wi
1 or 0: world exists or not

……binary digit for W1 …… binary digit for Wn
n=possible worlds number

possible worlds ordering

Ordered-Based Representation of Context

Ex: world_vector of the expl. context of node 1.1.6.1 = 0011

20

Explicit Context Table:

Assigns an explicit context
(expressed in binary format
according to world vector
representation) to a MXML node.

Inherited Context Coverage Table:

Assigns an inherited context coverage
(expressed in binary format according to
world vector representation) to a MXML
node.

Context Representation (5/5)
Ordered-Based
Representation of Context

21

Multidimensional XPath (MXPath) (1/2)

MXPath:
� An extension of XPath able to easily express

context-aware queries on MXML data.
� Both explicit context (ec) and inherited context

coverage (icc) are used to navigate over
multidimensional elements and attributes.

� Conditions on the explicit context at any point
of the path are allowed.

� Both multidimensional and context nodes can
be returned.

22

MXPath example:
[icc() >= “-”],/child::book
/child::cover[ec() >= “ed=gr”]/child->picture

Result

Query in English:

Find the (multidimensional) sub-
element picture of element coverof
the greek edition of the book.

cover[ec() >= “ed=gr”]
is anexplicit context qualifier. The
functionec() returns the explicit
context of a node. The above qualifier
says that the ec of the node cover must
be superset of the context described
by the context specifier[ed=gr].

Multidimensional XPath (MXPath) (2/2)

23

MXPath to SQL conversion algorithm (1/4)

Methodology:
� Give a MXPath query “Q”, we construct the

Multidimensional Tree Pattern “G” of Q.

� We divide “Q” in sub-paths according to
segmentation rules, which define the
appropriate segmentation points in “G”.

� The sub-paths of “Q” and the predicates are
used as input for the MXPath to SQL
conversion algorithm.

24

MXPath to SQL conversion algorithm (2/4)

MXPath example:
/book[authors[author=“Brian W.K.”]]
/cover[ec()=“ed=gr”]/->material

Query in English:

Find the (multidimensional) sub-
element materialof element coverof
the greek edition of the bookwhich
has an author named “Brian W.K.”.

Notice that the predicate
[authors[author=“Brian W.K.”]]

is a branch.
Result

branch

25

MXPath to SQL conversion algorithm (3/4)

MXPath query “Q”:
/book[authors[author=“Brian W.K.”]]
/cover[ec()=“ed=gr”]/->materialbook(M)

book

cover(M)

cover[ec()=“ed=gr”]

material(M)

Multidimensional
Tree Pattern

Segmentation (Q):
Sub_Path_1: #/book
Predicate_1: [authors[author=“Brian W.K.”]]
Sub_Path_2: #/book#/cover
Sub_Path_3: #/book#/cover#/->material

Segmentation
branch (authors[author=“Brian W.K.”]):
Sub_Path_1: #/book#/authors#/author
Value_1=“Brian W.K.”

“Brian W.K.”authors(M) authors author(M) author

26

MXPath to SQL conversion algorithm (4/4)
MXPath: /book[authors[author=“Brian W.K.”]]/cover[ec()=“ed=gr”]/->material

SQL:

Select a3.node_id
From Element_Table a1, Element_Table a2,

Element_Table a3, Path_Table p1,
Path_Table p2, Path_Table p3,
EC_Table ec1

Where p1.path Like '#/book' and
a1.path_id = p1.path_id and
a1.node_id = ANY (
Select SUBSTRING_INDEX(a_id,'.', 2)
From

(Select a1.node_id AS a_id
From Element_Table a1, Path_Table p1,
Value_Table v1
Where p1.path Like '#/book#/authors#/author' and
a1.path_id = p1.path_id and
v1.path_id = p1.path_id and
v1.value = 'Brian W.K.' and
v1.node_id Like CONCAT(a1.node_id,'%')

) AS T
) and
a2.node_id Like CONCAT(a1.node_id,'%') and
p2.path Like '#/book#/cover' and
a2.path_id = p2.path_id and
a2.node_id = ec1.node_id and
ec1.world_vector LIKE '000111' and
a3.node_id Like CONCAT(a2.node_id,'%') and
p3.path Like '#/book#/cover#/->material' and
a3.path_id = p3.path_id

27

Summary
� MXML
� Storing MXML in Relational DB & Context Representation

(path-based approach)
� MXML querying using MXPath
� Converting MXPath queries to SQL queries

Future work
� Conversion Algorithm implementation and evaluation
� Further optimization of the relational schema

28

References

1. N. Fousteris, Y. Stavrakas, and M. Gergatsoulis.
Multidimensional XPath. In Proc. of iiWAS 2008 , pp. 162-169.
ACM, 2008 .

2. M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating
Dimensions in XML and DTD. In Database and Expert
Systems Applications, 12th International Conference, DEXA
2001 Munich, Germany, September 3-5, 2001, Proceedings,
volume 2113 of Lecture Notes in Computer Science, pp. 646-
656. Springer, 2001.

3. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: a path-based approach to storage and retrieval of XML
documents using relational databases. ACM Transactions on
Internet Technology, 1(1):110-141, 2001.

29

Thank you..

