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Abstract The problem of indexing large volumes of 

high dimensional data is an important and popular 
issue in the area of database management. There are 
many indexing methods that behave well in low 
dimensional spaces, but, in high dimensionalities, the 
phenomenon of the curse of dimensionality renders all 
indexes useless. For example, when issuing range 
queries almost all of the index pages have to be 
retrieved for answering these queries. In this paper we 
review the state-of-the-art research regarding high 
dimensional spaces and we demonstrate the 
dimensionality curse phenomenon using the TPIE KDB-
tree implementation. 
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I.INTRODUCTION 
The   term  “curse  of  dimensionality”  describes   the   rapid  
deterioration in the performance of high dimensional 
indexes as the number of variables (or dimensions) 
increases. When range or k-nearest neighbor queries are 
issued in high dimensional spaces, most (if not all) of 
the pages of the indexing structures that are employed to 
store the high dimensional points are visited, and the 
good performing in low dimensional spaces indexing 
methods, end up behaving as the plain sequential scan.  
 One of the classical indexing methods is the 
KDB-tree (Robinson, 1981) with TPIE (Arge et al, 
2002) being one of his most efficient implementations. 
The KDB-tree combines some of the properties of the 
adaptive k-d-tree (Bentley, 1975) and the B-tree to 
handle multidimensional points. Each interior node 
corresponds to an interval-shaped region. Regions 
corresponding to nodes at the same tree level are 
mutually disjoint; their union is the complete universe. 
The leaf nodes store the data points that are located in 
the corresponding partition. Like the B-tree, the KDB-
tree is a perfectly balanced tree that adapts well to the 
distribution of data. 
 In Section II, we present some observations 
regarding the dimensionality curse phenomenon. In 
Section III, we discuss the concentration phenomenon 
and in Section IV, we demonstrate the behavior of the 
KDB-tree in high dimensions. We conclude in Section 
V. 

II.THE CURSE OF DIMENSIONALITY 
The following phenomena give an insight to the notion 
of the dimensionality curse. See Weber et al. (1998) for 
further details. 

 1. The partitioning schemes usually split the 
data space in each dimension in two halves. With d 
dimensions there are 2d partitions. With d<=10 and N on 
the order of 106 such a partition makes sense. However 
if d is larger, say d=100, there are around 1030 partitions 
for only 106 points. An overwhelming number of 
partitions are empty. 
 
 2. If we consider a hypercube range query with 
length s in all d dimensions the probability that a point 
lies within that range query is given by Pd[s]=sd. This 
probability function is plotted in Fig. 1 below. From the 
formula, directly follows that even very large range 
queries are not likely to contain a point. At d=100 a 
range query with length 0.95 selects 0,59% of the data 
points. This hypercube range query can be placed 
anywhere   in   the  data   space  Ω.  Thus,  we   conclude   that  
the data space is sparsely populated. 
 

 
 3. The largest spherical query that fits entirely 
within the data space is the query spd(Q,0.5) where Q is 
the centroid of the data space. The probability that an 
arbitrary point R lies within this sphere is given by the 
sphere volume 
 

The relative volume of the sphere shrinks markedly as 
the dimensionality grows and it increasingly becomes 
improbable that any point will be found within this 
sphere at all. Table 1 shows this probability for various 
numbers of dimensions. 
 
 4. From the probability equation given above, 
one can determine a size a data set would have to have 

Figure 1. Plotting the probability that a hypercube query with side s 
contains a point. 
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such that on average at least one point falls into the 
sphere spd(Q,0.5) (for even d). This is given in the 
following equation: 

 
 
 

Table 1 enumerates this function for various numbers of 
dimensions. The number of points needed explodes 
exponentially. At d=20, a database must contain at least 
40 million points in order to ensure that on average at 
least one point lies within this sphere. 
 

D P[R  ε  spd(Q,0.5)] N(d) 

2 0.785 1.273 

4 0.308 3.242 

10 0.002 401.5 

20 2.461 * 10-8 40,631,627 

40 3.278 * 10-21 3.050 * 1020 

100 1.868 * 10-70 5.353 * 1069 

Table 1. Probability that a point is in the largest hyper-sphere 

  
 5. The expected Nearest Neighbor distance 
between   two   points   in   a   data   space  Ω   is   given   by   the  
following formula 
 
 
 
 
where Q is the query point. Based on this formula, and 
if one estimates it with the Monte Carlo method, one 
finds that NN distance grows steadily with d, and except 
trivially small data sets, the objects are widely scattered 
and the probability of being able to identify a good 
partitioning of the data space diminishes. 
 
 6. Finally, due to the dimensionality curse 
phenomenon, as we will demonstrate in our experiments 
with the KDB-tree, when a range query is performed 
nearly all data pages have to be accessed in order to 
obtain the answer. This equals almost to a sequential 
scan. 

III.CONCENTRATION PHENOMENON 
The concentration phenomenon can be stated as follows 
(Ledoux, 2001): in high dimensional spaces all pairwise 
distances between points seem identical. Here, we'll 
study the concentration of the distances through the 
concentration of the norm. If we have n points with d 
dimensions each, taking values from the unit cube [0,1]d 
and we then consider their norms ||x||, the values of ||x|| 
are bounded in the interval [0,M], where M=||(1,1,....1)||.  
 Let us consider the euclidean norm M=sqrt(d). 
If we plot the minimum observed value and the 
maximum observed value, we observe that in low 

dimensions these values are close to the bounds of the 
domain of the norm, respectively 0 and sqrt(d). Also, 
the average value of the norm increases with the 
dimension, whereas the standard deviation seems rather 
constant. When the dimension is large (above 10) the 
minimum and maximum observed values tend to move 
away from the bounds. When the number of points are, 
for example, 100000 all the observed norms seem to 
concentrate in a small portion of their domain. In 
addition this portion gets smaller and smaller as the 
dimension grows when compared to the size of the total 
domain. 
 The Minkowski norms form a family of norms 
parametrized by their exponent p=1,2,3.... 
 

 
 
 
 

When 0<p<1, the triangle inequality does not hold so 
these norms are called prenorms or fractional norms. 
Actually, the inequality is reversed. A consequence is 
that the straight line is no longer the smallest path 
between two points. Fig. 2 depicts 2D unit balls (that is 
the set of xj for which ||xj||=1) for various values of p. 
We see that for p>=1 the balls are convex and for 0<p<1 
they are not. 
 

A. Concentration of the euclidean norm 
If X is in Rd and is a random vector with independent 
and identically distributed components, and Xi follows 
distribution F, then  

 
 

where 
a and b 

are constants that do not depend on the dimension 
(François  et  al.,  2007;;  Aggarwal,  2001).  This  holds   for  

 
Figure 2. 2D-Unit Balls. 
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any kind of distribution. Different distributions will lead 
to different values for a and b but the asymptotic results 
remain.  
 This shows that the expectation of the 
euclidean norm of random vectors increases as the 
square root of the dimension, whereas its variance is 
constant and independent of the dimension. Therefore, 
when the dimension is large the variance of the norm is 
very small compared with its expected value. Also when 
the dimension is large vectors seem normalized. The 
relative error made while considering E(||X||2) instead of 
the real value of ||X||2 becomes negligible. As a 
consequence, high dimensional vectors appear to be 
distributed on a sphere of radius E(||X||2).  
 Since the euclidean distance is the norm of the 
difference between two random vectors, it's expectation 
and variance follow the two above laws and pairwise 
distances between points in high dimensional spaces 
seem to be all identical. Finally, if Xi are not 
independent the results are still valid provided that we 
replace d with the actual number of degrees of freedom.
 In contrast to the work of Demartines (1994), 
where a data set X consists of n independent draws xj 

from a single random vector X, Beyer (1999) considers 
n random vectors Pj where a dataset is made of one 
realization   of   each   random   vector.   Beyer’s   theorem  
states that if Pj 1<=j<=n are n d-dimensional 
independent and identically distributed random vectors 
and if 
 
 
 
 
 
 then  for  any  ε>0 
 
 
 
 
 
This is explained as follows. Suppose there are a set of n 
data points randomly distributed in the d-dimensional 
space and some query points are supposed to be located 
at the origin without loss of generality. Then, if the 
above hypothesis is satisfied, independent of the 
distribution of the components of the Pj, the difference 
between the largest and smallest distances to the query 
point becomes smaller and smaller when compared with 
the smallest distance when the dimension increases. The 
ratio 
 
 
 
 
is called the relative contrast. 
 So, Beyer concluded that all points are located 
at approximately the same distance from the query 

point. Thus, the concept of NN in a high dimensional 
space is less intuitive than in a lower dimensional one. 
B. Concentration of Minkowski norms 
There   is   the   theorem   of   Hinneburg   (François   et   al.,  
2007; Aggarwal et al., 2001), that states the following: 
let Pj 1<=j<=n, n d-dimensional independent and 
identically distributed random vectors and ||.||p the 
Minkowski norm with exponent p. If the Pj are 
distributed in [0,1]d then there exists a constant Cp 
independent of the distribution of the Pj such that 
 
Then, there is the suprising fact that on average the  

 
 
 
contrast grows 
as d1/p-1/2. As a result, the contrast converges to a 
constant when the dimension increases and when the 
euclidean distance is used. For the L1 norm, it increases 
as sqrt(d), for the euclidean norm (p=2) it remains 
constant and for norms with p>=3 it tends towards zero. 
Thus, the conclusion is that for Lp metrics with p>=3 the 
NN search in a high dimensional space tends to be 
meaningless. In other words, distance loses its 
discriminative power between the notions of close and 
far. So, on average the ratio between the contrast and 
d1/p-1/2 is bounded and these bounds depend on the value 
of p. Furthermore, if the number of points n is large, the 
upper bound may be very large too. This value is much 
closer though to the lower bound than to the upper 
bound. 
C. Concentration of fractional norms 
Aggarwal extended Hinneburg's result to fractional p-
norms   (François   et   al.,   2007;;   Aggarwal   et   al.,   2001).  
The theorem states that if Pj 1<=j<=n are n d-
dimensional independent random vectors distributed 
over [0,1]d then there exists a constant C independent of 
p and d such that 

Aggarwal notes that the constant sqrt(1/(2p+1)) may 
play a valuable role in affecting the relative contrast and 
confirmed it experimentally with synthetic data sets. It 
was also concluded that on average fractional norms 
provide better contrast than Minkowski norms in terms 
of relative distance. Finally, Skala (2005) showed that 
the ratio 
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increases linearly with the dimension d. Here X is a 
random vector whose components are independent and 
identically distributed. 

IV.EXPERIMENTS 
Figures 3 and 4 demonstrate how the TPIE KDB-tree 
(Arge et al., 2002) behaves when the data set size is 
20,000 and 1,000,000 points and we perform range 
queries that contain the number of points shown (of 
course with the relevant side length in each dimension).  
 As low as in 8 dimensions TPIE KDB-tree 
must visit all the created nodes in order to find the 
desired number of points. This result demonstrates the 
appearance of the dimensionality curse phenomenon, 
since a plain sequential scan is more efficient than using 
the KDB-tree. When the dataset is 1,000,000 points this 
phenomenon occurs when the dimensionality is 16. 

 
Figure 3. Percentage of visited pages for varying query selectivity and 
dimensionality (N=20000) 

 
Figure 4. Percentage of visited pages for varying query selectivity and 
dimensionality (N=1,000,000) 

V. CONCLUSIONS 
In this paper we reviewed in depth the current findings 
on the study of high dimensional spaces. We gave many 
different explanations of the notion of the 
dimensionality curse. Finally, we demonstrated how the 
KDB-tree behaves in low to medium dimensions and 
how the dimensionality curse appears even in low 
dimensions and small database sizes.  
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