
30 INTEGRATED INFORMATION

Improving Query Efficiency in High Dimensional Point Indexes
Evangelos Outsios and Georgios Evangelidis

University of Macedonia, Department of Applied Informatics, 54006, Thessaloniki, Greece
{outsios, gevan} (at) uom.gr

Abstract: In this paper, we focus on the leaf level

nodes of tree-like k-dimensional indexes that store the
data entries, since those nodes represent the majority of
the nodes in the index. We propose a generic node
splitting approach that defers splitting when possible
and instead favors merging of a full node with an ap-
propriate sibling and then re-splitting of the resulting
node. Our experiments with the hB-tree, show that the
proposed splitting approach achieves high average
node storage utilization regardless of data distribution,
data insertion patterns and dimensionality.

Keywords: K-dimensional point indexing,
Optimizing data node storage utilization, Range query
performance

I. INTRODUCTION
Lately, with the increased interest in Data Mining, in-
dexing of k-dimensional vectors has become essential
when dealing with kNN classification. Brute force ap-
plication of kNN classification on large databases in-
volves as many computations of distances as the size of
the database, since one has to find the k closest points to
the query point. Data reduction and/or data di-
mensionality reduction techniques are used to reduce
the computational cost, but they usually decrease the
accuracy of the kNN classifier. Alternatively, indexing
can be used to reduce the linear cost of searching to
logarithmic. Unfortunately, all high-dimensional in-
dexes suffer from the “dimensionality curse” problem. It
has been shown that above 8 dimensions, most indexes
perform no better than the exhaustive sequential search
of the whole database when answering kNN queries
(Berchtold et al., 1998).

For very large high-dimensional datasets, the most
sensible approach to kNN classification is a combina-
tion of a data dimensionality reduction technique, to
reduce the dimensions down to 8 to 16, and then, the
use of a high dimensional point index. That is why the
quest for efficient indexes in medium to low dimensions
has regained the interest of the research community.
Efficient indexes should not be affected by the
cardinality of the dataset, the data distribution, the
dimensionality, and the insertion patterns. Since the
kNN classifier is a model-free classifier, new insertions
in the dataset should dynamically update the model, i.e.,
the index, without affecting its performance.

Indexes with guarantees in node storage utilization,

obviously, lead to better query performance, since fewer
nodes (disk pages) are visited to answer a query. kNN
queries are a specialization of range queries and require

visiting of multiple leaf or data level nodes of the index,
where rids of the points or the points themselves are
stored.

In this paper, we deal with tree-like k-dimensional
indexes that partition the space in non-overlapping
subspaces, like the KDB-tree (Robinson, 1981) or the
hB-tree (Lomet and Salzberg, 1990; Evangelidis et al.,
1997). The hB-tree and the hB-pi* tree (Zhou and
Salzberg, 2008), a variation that also indexes empty
space, have been recently shown to outperform the R*-
tree (Beckmann et al., 1990), the most well known
spatial index. We focus on their leaf or data level index
nodes since those nodes represent the majority of the
index nodes. We propose a generic node splitting
approach that delays data node splitting when possible
and instead favors redistribution of the contents of a full
node with an appropriate sibling. Our experiments with
the hB-tree, show that the proposed splitting approach
achieves high node storage utilization and good range
query performance.

In Section II, we present related work in improving
data node storage utilization and provide a short de-
scription of the KDB-tree and the hB-tree. We also
present a policy for selecting the splitting attribute in
high dimensional indexes. We propose a new data node
splitting method in Section III, and we present
experimental results in Section IV. Finally, we conclude
the paper in Section V.

II. RELATED WORK
In this section, we review the approaches that have been
proposed in the literature for improving storage
utilization. First, we discuss the 1-dimensional case with
the B+tree, and then, we briefly describe the structure of
the hB-tree and the KDB-tree. Finally, we give some
insight on how splitting attribute selection policies can
improve storage utilization and range query
performance, when splitting data nodes.
A. Data node storage utilization
For the B+tree, there are many ways to increase node
storage utilization (Comer, 1979). For example, Knuth
(1973), proposes to delay splitting by locally
redistributing the contents of nodes until two sibling
nodes become full. Then the two full nodes are split into
three nodes with a node storage utilization of at least
66%, an improvement over the 50% storage utilization
of the B+tree. Although the average node storage
utilization remains unaffected and about 69% (� ln2)
for uniform data distributions (Yao, 1978), this
approach achieves better storage utilization for non-
uniform data distributions.

ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 31

In addition, even for uniform data distributions, in-
dex performance is affected by the way data points are
inserted in the index. For random (uniform) insertion
patterns there is no difference on the way nodes are
split. As long as nodes are split in a 1:1 ratio, average
storage utilization is close to 69%. But under different
patterns of insertion, for example, block insertions,
where incoming points are inserted to a particular node
until that node splits, average storage utilization can
degrade considerably.

The picture is quite different when indexing in high
dimensions. Almost all of the proposed k-dimensional
indexes do not provide such guarantees. Only the hB-
tree, that splits its nodes in a 1:2 ratio in the worst case,
achieves a comparable to the B+tree average node
storage utilization (about 67%) and worst node storage
utilization of 33%. But under certain patterns of record
insertions, even the hB-tree can have average node
utilization close to 50%. In the k-dimensional paradigm,
it is not always possible to merge and re-split nodes as
in the 1-dimensional case of the B+tree, because the
notions of the “next” and “previous” sibling nodes
cannot be defined. Redistribution of entries among
nodes is much more complicated, and, depending on the
index at hand, involves complicated updates on the
corresponding index terms of the participating nodes.
B. KDB-tree and hB-tree
In both the KDB-tree and the hB-tree, data nodes, i.e.,
leaf level index nodes, contain the k-dimensional points
or data terms for those points (in the case of secondary
indexes). In a way analogous to the B+tree, when a data
node becomes overfull because of insertions of new
points, it has to be split. After the split we end up with
two data nodes, the initial one occupying the same disk
page and a new one occupying a new disk page. This
process is repeated continuously, every time a data node
becomes overfull.

The KDB-tree splits data nodes always using a
single attribute, thus all data nodes are hyper-rectangles
(or bricks). Also, internal nodes, i.e., index nodes above
the leaf level, are split either at the root of their internal
kd-tree, thus by a hyperplane, or by using some other
splitting attribute to achieve balanced splits at the cost
of downward propagation of splits. The KDB-tree does
not have any guarantees on node storage utilization.

The hB-tree is an improvement of the KDB-tree,
since it guarantees an average node storage utilization of
67% by splitting nodes at a 1:2 ratio in the worst case
(compare this with B+tree’s 1:1 ratio). This can be
achieved both in the internal nodes that contain index
terms in the form of kd-trees and in the data nodes that
contain data entries. In Lomet and Salzberg (1990), it is
shown that a 1:2 split ratio is always possible. In
internal nodes, an appropriate kdsubtree is extracted
from the overfull node. In data nodes, it may be
necessary to use more than one attributes to achieve
such a split. The overfull node and the newly extracted
node can be hyper-rectangles from which smaller hyper

Figure 1: An example hB-tree

rectangles have been extracted, thus the name holey-

Brick-tree (hB-tree). -
In Figure 1, an hB-tree with two levels is shown. It
contains 5 data nodes and an internal node R, that is the
root of the hB-tree. R contains the index terms for its 5
children in the form of a kd-tree. Let’s assume that the
last split that happened was the one that extracted node
E from node A. Before the split, kdtree node x7 in R
had a left pointer to data node A. The index term
consisting of kd-tree node x3 (namely, the attribute and
attribute value that were used to split A and extract E)
was merged in the kd-tree of R to describe the new
space decomposition.
C. Splitting attribute selection policy
When splitting overfull data nodes the goal is (a) to
minimize the cost of future range queries, and, (b) to
maximize average node storage utilization. The second
goal, although it creates smaller trees, it may conflict
with the first goal. This is because, good node storage
utilization can lead to poor k-dimensional space
partitioning.

For good space partitioning, the obvious approach is
to split the space of the data node in half along the
longest edge (attribute) and to ignore the distribution of
the points in the node. The resulting data nodes will
index the same amount of space and will have regular
shapes, i.e., edges of similar lengths. Thus, they will
have the same probability of receiving new insertions of
points or of being visited by subsequent range queries.
The drawback of this approach is that we may end up
having nodes with low or zero storage utilization.
Alternatively, one may choose to achieve the best
possible node storage utilization by always trying to
achieve 1:1 point splits, at the cost of bad space
partitioning.

In Outsios and Evangelidis (2010), we experimented
with various splitting attribute selection policies for data
nodes. In this paper we choose the policy that uses the
best attribute for even point split and best possible space
split. This works as follows. Choose the attribute that
achieves the most even point split. In case of ties,
choose the attribute that splits along the longest edge.
By splitting along the longest edge, we favor hyper-
rectangles that are as close as possible to hyper-cubes.
The goal is to minimize the cost of range queries by
avoiding peculiar shaped subspaces.

32 INTEGRATED INFORMATION

III. NEW SPLITTING APPROACH
We focus our attention to the leaf level of the index,
since the data nodes are the majority of the nodes in the
tree index.

When splitting data nodes we should aim at:
1. Splitting the data node as evenly as possible

both in terms of points (to improve node
storage utilization) and space (to improve
range query performance). We achieve this by
using the best attribute for even point split,
and, at the same time, the best possible space
split.

2. Posting the most compact index term possible
to minimize the number of the internal index
nodes. We achieve this by always performing
hyperplane splits. Thus, we minimize the size
of the index terms, and the resulting data nodes
are always hyper-bricks.

To further improve the performance under non-
uniform data insertion patterns, we propose a new way
for dealing with overfull nodes. We first define the
terms paired and single data nodes. To illustrate the
term paired, we examine Figure 1. Data nodes E and A
are paired since they are pointed by the same kd-tree
node in the kd-tree of their parent R. Data nodes C and
D are also paired, whereas, data node B is considered to
be single.

The idea is to exploit the structure of the kd-tree in
the internal index nodes right above the data nodes, in
order to identify data nodes that can re-distribute their
contents. Following such an approach, leads to delayed
splits of overfull nodes until their paired node becomes
overfull, too.

IV. EXPERIMENTAL EVALUATION
We tested our splitting approach against the standard
splitting algorithm of the hB-tree. The tested variations
were the following:

m1 Original hB-tree data node splitting algorithm: do
not use any redistribution scheme. When a node
becomes full, split it.

m2 Redistribute among paired nodes and eventually
split: Paired nodes delay splitting by redistribut-
ing their contents with their paired sibling. Only
when both nodes in a pair become full, the one
that overflows, splits. Single nodes split when
full.

Table 1: Experiment parameters and values

Table 1 lists the parameters of the experiments and

the values we used.
We used relatively small node sizes in order to build

hB-trees with many levels and stress our algorithms.
Notice that the data node size is affected by the di-
mensionality of the points, i.e., 10 2-dim points occupy
1/10th of the space occupied by 10 20-dim points.

Also, we assumed that there are no deletions of
points. The index only grows in time. To achieve the
desired range query windows, we generated hypercube
queries that covered 0.01% of the k-dimensional space.
Thus, for 100K uniformly distributed points, we expect
the query window to contain 10 points.

In Table 2, we compare the splitting methods m1
and m2 on average data node storage utilization and
range query efficiency (in terms of average number of
visited pages to answer 100 random queries with 0.01%
selectivity).

We use 100K uniformly distributed points with uni-
form insertion pattern and we vary dimensionality. Us-
ing small node sizes we build trees with 7 levels. We
observe that m1 and m2 have comparable node storage
utilization across dimensions, but, as expected, m2
builds slightly smaller trees, i.e., with fewer data nodes.
Thus, m2 performs slightly better in terms of average
data node storage utilization and average number of
accessed nodes per range query.

Next, we focus on node storage utilization when us-
ing a block insertion pattern, i.e., when a random data
node is chosen and all incoming points target that node
until the node splits. Then, another random data node is
chosen, and so on. In this experiment, we fix the di-
mensionality to 6 and we vary the node sizes. Table 3,
demonstrates that m1 achieves a node storage utilization
slightly above 50%, whereas, m2 achieves very good
average data node storage utilization. Thus, the average
number of accessed nodes per range query is
considerably lower.

V. CONCLUSION
We proposed a new data node splitting method for the
hB-tree or the KDB-tree. Since data nodes comprise the
majority of nodes in a tree index, higher data node
storage utilization can improve search performance.
There is a need for indexes in medium dimensionality
that can efficiently answer kNN queries.

Parameter Values
attribute value range [0, 1]
k=dimensionality 2 – 15
database size 100K points
DNS=data node sizes 10 – 100 points
INS=internal node sizes 5 – 50 kd-tree nodes
insertion patterns uniform and block
range query space selectivity 0.01%

ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 33

Table 2: Node storage utilization and query efficiency per splitting method for uniform data and insertion pattern and varying dimensionality

Table 3: Node storage utilization per splitting method for uniform data, block insertion pattern and varying node sizes

So, we examined whether our splitting method
improves the performance of the above mentioned
indexes.

We defined the notion of paired data nodes, and we
used this notion to propose the new splitting method.
Our experiments show that redistribution works really
well and improves data node storage utilization and
range query performance.

REFERENCES
Beckmann, N., Kriegel, H.-P., Schneider, R., and

Seeger, B. (1990). The r*-tree: an efficient and ro-
bust access method for points and rectangles. In
Proceedings of the 1990 ACM SIGMOD interna-
tional conference on Management of data,
SIGMOD ’90, pages 322–331, New York, NY,
USA. ACM.

Berchtold, S., Bohm, C., and Kriegal, H.-P. (1998). The
pyramid-technique: towards breaking the curse of
dimensionality. In Proceedings of the 1998 ACM
SIGMOD international conference on Management
of data, SIGMOD ’98, pages 142–153, New York,
NY, USA. ACM.

Comer, D. (1979). Ubiquitous b-tree. ACM Comput.
Surv., 11:121–137.

Evangelidis, G., Lomet, D., and Salzberg, B. (1997).
The hb7-tree: a multi-attribute index supporting
concurrency, recovery and node consolidation. The
VLDB Journal, 6:1–25.

Knuth, D. E. (1973). The Art of Computer Program-

ming, Vol 3, Sorting and Searching. Addison-
Wesley Publ. Co., Reading, MA, USA.

Lomet, D. B. and Salzberg, B. (1990). The hb-tree: a
multiattribute indexing method with good guar-
anteed performance. ACM Trans. Database Syst.,
15:625–658.

Outsios, E. and Evangelidis, G. (2010). Achieving
optimal average data node storage utilization in k-
dimensional point data indexes. In Proceedings of
the 5th International Scientific Conference, eRA:
The Contribution of Information Technology to
Science, Economy, Society and Education, Piraeus,
Greece.

Robinson, J. T. (1981). The k-d-b-tree: a search struc-
ture for large multidimensional dynamic indexes.
In Proceedings of the 1981 ACM SIGMOD
international conference on Management of data,
SIGMOD ’81, pages 10–18, New York, NY, USA.
ACM.

Yao, A. C.-C. (1978). On random 23 trees. Acta In-
formatica, 9:159–170. 10.1007/BF00289075.

Zhou, P. and Salzberg, B. (2008). The hb-pi* tree: An
optimized comprehensive access method for
frequent-update multi-dimensional point data. In
Proceedings of the 20th international conference on
Scientific and Statistical Database Management,
SSDBM ’08, pages 331–347, Berlin, Heidelberg.
Springer-Verlag.

splitting
method k INS DNS nodes per tree level

utilization
(%)

average nodes
accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64
m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65
m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72
m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39
m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38
m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81
m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87
m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting
method k INS DNS nodes per tree level

utilization
(%)

average nodes
accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64
m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65
m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72
m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39
m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38
m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81
m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87
m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting
method k INS DNS nodes per tree level

utilization
(%)

average nodes
accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64
m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65
m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72
m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39
m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38
m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81
m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87
m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting
method k INS DNS nodes per tree level

utilization
(%)

average nodes
accessed

m1 6 5 10 1,4,15,57,231,974,3954,16666 54,55 1254,37
m2 6 5 10 1,2,8,35,151,640,2821,12352 73,6 1038,52
m1 6 25 50 1,15,219,3920 51,03 447,47
m2 6 25 50 1,8,156,2841 70,41 372,11
m1 6 50 100 1,2,62,1980 50,52 284,84
m2 6 50 100 1,43,1422 70,34 243,26

http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?doid=93597.98741
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=276304.276318&coll=DL&dl=ACM&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?doid=356770.356776
http://dl.acm.org/citation.cfm?doid=356770.356776
http://dl.acm.org/citation.cfm?id=280635&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=280635&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=280635&CFID=63426070&CFTOKEN=59658368
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=99949
file:///G:/Downloads/era.teipir.gr/era5/era5_pro.doc
http://dl.acm.org/citation.cfm?doid=582318.582321
http://dl.acm.org/citation.cfm?doid=582318.582321
http://dl.acm.org/citation.cfm?doid=582318.582321
http://dl.acm.org/citation.cfm?doid=582318.582321
http://dl.acm.org/citation.cfm?doid=582318.582321
http://dl.acm.org/citation.cfm?doid=582318.582321
http://ftp.math.utah.edu/pub/tex/bib/actainfo.html#j-ACTA-INFO
http://ftp.math.utah.edu/pub/tex/bib/actainfo.html#j-ACTA-INFO
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173
http://dl.acm.org/citation.cfm?id=1425144.1425173

	procs_INFO_2011 43
	procs_INFO_2011 44
	procs_INFO_2011 45
	procs_INFO_2011 46

