
ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 205

Implementation of Workflows as Finite State Machines in a National Doctoral
Dissertations Archive

Nikos Houssos, Dimitris Zavaliadis, Kostas Stamatis and Panagiotis Stathopoulos
1 National Documentation Centre / National Hellenic Research Foundation, 11635, Athens, Greece.

nhoussos (at) ekt.gr, dimzava (at) ekt.gr, kstamatis (at) ekt.gr, pstath (at) ekt.gr

Abstract Workflows for submission and processing
of digital material is one of the important aspects of
open access repositories and the major concerns in
their implementation. The subject of the present paper is
the modelling of processing workflows in the Hellenic
National Archive of Doctoral Dissertations as Finite
State Machines and their implementation through an
original software library that enables client
applications to create and utilise FSMs.

Keywords Repositories, Workflows, Finite state
machines, Electronic theses and dissertations, Object-
oriented design.

I. INTRODUCTION
In this article we present the implementation of
workflows for cataloguing and processing doctoral
theses in the Greek National Archive of Doctoral
Dissertations (HEDI) based on an original software
library for Finite State Machines that has been
developed by the Hellenic National Documentation
Centre (EKT).

EKT has been granted by law 1566/1985 the
responsibility of developing and maintaining the Greek
National Archive of doctoral theses. The archive
contains the doctoral dissertations produced in Higher
Education Institutions as well as a number of PhD
theses awarded to Greek scholars by universities outside
Greece (USA, UK, Canada, and Germany, among
others), in total about 24.500 theses as of February
2010, 2.75M pages of digitised and born-digital
dissertations, with 1200 -1400 new dissertations
arriving every year.

HEDI is supported by IT systems since 1986 when
EKT developed the bibliographic database ‘National
Archive of PhD Theses” employing for cataloguing the
home-grown library automation software, ABEKT
Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν
βρέθηκε.. Initially, EKT has been collecting from
individual universities and cataloguing theses solely in
print form. The database was made available to the
public via the mainframe host computer ‘Hermes’ for
more than a decade from 1986 until 1999. Thereafter, a
new version of ABEKT has been used, including
support for metadata standards like UNIMARC,
UNIMARC Authorities and ISO 2709 and the Z39.50
protocol for search and retrieval of bibliographic
records. This system, later integrated into the ARGO
digital library portal (argo.ekt.gr) (Sfakakis, 2003) that
is still in operation, provides free web-based access to

metadata as well as advanced services to librarians,
through a library catalogue-like user interface.
Meanwhile, EKT proceeded with executing a major
digitisation project for the majority of the dissertations
in the – until then – print-only archive, which enabled
open access to theses full text for Web users – realised
through a specialised presentation application
(Loverdos, 2001). Furthermore, in later years
universities have been submitting theses to the archive,
in both print and electronic form. As a result, today
more than 75% of the theses in HEDI are available
online in full text.

In 2009, a decision was made to re-build and
modernise the information infrastructure supporting
HEDI – a project that was completed in 2010. The
following main choices were made:
 Create an e-theses repository on the DSpace

platform, mainly targeting end-users.
 Create a separate IT application for the

administration and management of the EKT
internal workflows that are necessary for the
processing of the material submitted to HEDI. The
output of these workflows for every thesis is a
quality-controlled metadata record and a searchable
full-text file (or set of files). An important aspect to
consider is that these workflows should be able to
handle dissertations in both print and electronic
form – note that the print archive is still maintained
although a thesis is normally submitted in both
print and electronic form. This application supports
processing workflows for theses, acting as a service
consumer for the workflow engine presented in this
article.

 Maintain and constantly update the ARGO version
of HEDI as a bibliographic system of choice for
librarians offering to the latter additional important
services like record export and transformation
among various formats (e.g., MARC21 to
UNIMARC). Ceasing to provide the HEDI
database through this portal was considered to be a
non sound option, given the popularity of ARGO
among the Greek library community as well as the
support of UNIMARC and related services.

 Select and reuse open source main software
components, from the operating system to the
repository and the middleware/database layer,
while exploiting EKT’s virtual infrastructure
(Stathopoulos, 2009) in order to provide HEDI
services with higher availability, scalability and
total cost of ownership. The same software

206 INTEGRATED INFORMATION

components and technology have been previously
used by EKT while developing institutional and
subject repositories.

II. PROCESSING WORKFLOW FOR THESES
The internal workflow followed for the processing of
the incoming dissertations material is depicted, at a high
level of abstraction, in Figure 2 and can be described as
follows:

Recording of incoming
material

Cataloguing – publication
of metadata record to

repository and
bibliographic database

Production of digital
material for publication

and preservation

Publication of digital
material to repository and
bibliographic database -

Preservation
Figure 2.High-level overview of workflow phases.

1. The first step is the recording of the incoming
material upon its receipt by EKT. This material
includes the full-text dissertation document in print
and electronic form (only print is currently
mandatory); sometimes supplementary files (e.g.,
data sets) are provided. Furthermore, a declaration
sheet by the doctoral degree holder about copyright
issues is normally received – authors are being given
the option to either make their full-text thesis
publicly available immediately or after an embargo
period (at most three years), as is common in other
e-thesis systems. This sheet contains also basic
descriptive metadata, comprising also author-defined
keywords and abstract. Recording of physical (e.g.,
thesis hard copies) and digital object (files) is
performed, as well as creating a very short metadata
record including fields like author, degree awarding
institution, date of degree award, date of submission
to HEDI, public availability/copyright status as
specified by the author, etc.

2. The second step in the workflow is the cataloguing
of the thesis, to produce a detailed metadata record
in the UNIMARC format; this is performed by
qualified EKT/NHRF library personnel, starting
either from scratch or from an ingested institutional
repository record through a user-friendly interface.

Furthermore, author-defined metadata is also taken
into account, when available, and could be utilised
after quality control. It is during the cataloguing
phase that a unique identifier (number) is assigned to
this particular thesis; this number is permanent and
is used to identify all material related to the thesis
within the archive. The assignment of the unique
identifier is also a strict pre-requisite for starting the
processing of the corresponding digital material (see
step 3). After cataloguing, the metadata record
(without the corresponding digital files – e.g. thesis
full text) is published online in the repository and the
bibliographic database.

Figure 2.The workflow modelled as a Finite State Machine.

3. The third phase is the processing of the material for
the generation of a high quality, fully searchable
digital file containing the dissertation full-text, as
well as image files for individual pages to allow
online page-by-page reading. This phase typically
includes one of the following alternatives:
 Digitisation, if the thesis document is available

only in print form, which includes Optical
Character Recognition (OCR) processing for
making the resulting PDF file full-text
searchable.

 Production, based on the initially submitted
digital file(s), of a thesis full-text file (in PDF
format) ready for publication and subsequent
preservation. This could entail, among others,
transformation to PDF from other formats like
.doc and .odp and checks on whether the
dissertation text is fully searchable (otherwise,
OCR is applied).

ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 207

4. The last step in the workflow concerns the
submission and storage of the digital material in a
repository and the corresponding detailed record at
the bibliographic database. Subsequent updates in
the metadata and/or digital files are performed
through the theses administration application and are
propagated to both the repository and the
bibliographic database. Future preservation actions
are enacted on the digital files in the repository.
Figure 2 depicts the processing workflow modelled

as a Finite State Machine (FSM) - a simplified version
of the workflow is depicted for economy of
presentation.

III. A SOFTWARE ENGINE FOR FINITE STATE
MACHINES

To address the implementation of the aforementioned
workflow in the system supporting HEDI, we have
developed a software library, call FSM engine, for
executing workflows modelled as Finite State
Machines.

In particular, the FSM Engine is a Java API that
allows definition and execution of workflows
represented as state machines. It helps in cases where
the behaviour of an object needs to be changed at
runtime depending on its state, eliminating the need for
extensive use of if/else and switch statements which
make code unreadable and difficult to maintain. The
FSM Engine is inspired by the State Design Pattern
(Gamma, 1995) and has been developed by EKT.

The FSM Engine provides a set of reusable Java
classes and interfaces that apply the abstract concepts of
finite state machines at the source code level. By
extending and implementing those classes and
interfaces, a client application can systematically define
how a system reacts to certain events avoiding at the
same time cluttered case statements. This is achieved by
specifying a set of valid states for an object along with
possible transitions between states which are triggered
by events. In addition, guard conditions can determine
whether a transition should be executed or not and a set
of possible actions can be associated with a given
transition in order to be fired as a side effect of
executing the transition. Branching is also supported,
which enables multiple discrete transitions for a given
event and at a given state – the evaluation of a boolean
expression determines the specific transition to be
followed in such a case.

The FSM engine domain model is depicted in Figure
3. The main classes comprising the engine are the
following:
StateContext
Maintains a reference to the current state. It should be
implemented by one or more client classes that can have
different internal states and whose behavior changes
depending on those states.
State
Represents the different states of the state machine.
Each possible state of a class implementing the

StateContext interface should correspond to a concrete
implementation of this interface.
StateName
A Java enum acting as a bridge between StateContext
and States..

Figure 3.The FSM engine domain model.

Event
Represents an external or internal event such as a button
click or a date expiration that can change the State of an
object, thus leading to a state Transition in the system.
Typically, there is only one Transition corresponding to
a given Event but it is also possible to accommodate
more than one Transitions for an Event via Branches
and GuardConditions.
Transition
Defines the transition from one state to another as a
response of the state machine to an occurrence of a
specific Event. A Transition can be guarded by a
GuardCondition which determines whether the
execution of the Transition should proceed or not. In
addition, a Transition can be associated with one or
more Actions to be performed once the Transition has
been executed.
GuardCondition
A GuardCondition is actually a Boolean expression that
affects the behavior of the state machine by enabling
Transitions only when it evaluates to true and disabling
them when it evaluates to false. A GuardCondition can
be associated with many Transitions but each Transition
can have only one GuardCondition.
Action
Defines an activity that is to be performed when
executing a certain Transition. An Action can be
associated with more than one Transitions and a
Transition can have more than one Actions. Also note
that an Action can well trigger an Event having as a
result another Transition.

208 INTEGRATED INFORMATION

Branch
Acts as a container of Transitions. It is used in cases
where there is no one-to-one mapping between an Event
and a Transition but instead there are more than one
possible Transition for a given Event. In principle, the
Transitions contained in a Branch are mutually
exclusive, meaning that only one Transition will be
executed each time and this will be determined once the
GuardConditions of all Transitions have been evaluated.
FiniteStateMachine
An abstraction encapsulating the internal details of the
state machine, presenting a single interface to the
outside world. Implementation classes should be used as
the main point where the lifecycle management of a
StateContext takes place, whenever a triggering Event
occurs.

In practice, to use the engine, the implementor of a
workflow has to create concrete classes implementing
interfaces like State, StateContext, Event, Transition,
Action or the corresponding default classes offered by
the library.

An important feature of the engine is that a specific
workflow based on the implemented classes is specified
outside the code in an XML configuration file – in
particular an application context file of the Spring
framework. The Spring dependency injection
mechanisms are employed for an instantiation of a
workflow/FSM engine. Therefore, modifications in a
workflow (additions of states, transitions, events,
actions, etc.) can be injected into the system without
modifying source code – just by editing the
configuration file.

III. SUMMARY AND FUTURE WORK
The main subject of the present article is the modelling
of processing workflows in the Hellenic National
Archive of Doctoral Dissertations as Finite State
Machines and their implementation through an original
software library that enables client applications to create
and utilise FSMs. The adopted modelling and
development approach proved to be appropriate for this
use case.

Plans for further work regarding HEDI include the
support of online submission workflows by authorised
parties outside EKT (e.g. graduating doctoral students,
university personnel) and automated ingest of records
from external systems. These services require, among
others, more sophisticated workflows for quality control
both at the metadata and digital file level and further
automation of digital file checking and processing.

Regarding the FSM engine, future plans include
publising and maintaining it as an autonomous open

source project under a license that facilitates re-use in
third-party applications. In terms of features, a priority
is to make the engine even less intrusive for client
applications, probably through mechanisms like Java
annotations, aspect-oriented programming, and
potentially metaprogramming in cases of integration
with other than Java languages running on the Java
Virtual Machine such as Groovy. Furthermore, support
of advanced workflow features that go beyond standard
FSM functionality will be investigated, such as
clustering and orthogonality as supported by schemes
like statecharts (Harel, 1987).

REFERENCES
Gamma, E. et al., Design patterns: elements of reusable

object oriented software, Addison Wesley
Longman, Inc. (1995).

Harel D., “Statecharts: a visual formalism for complex
systems”, Science of Computer Programming,
8(3), 231-274 (1987).

Loverdos, C., Kapidakis, S., “Flexible, service-based
content presentation: The Hellenic Dissertations
Presentation System”, Lecture Notes in Computer
Science, Darmstadt, Germany, 2163 (2001).

Sfakakis, M., Kapidakis, S., “An architecture for online
information integration on concurrent resource
access on a Z39.50 environment”, Lecture Notes in
Computer Science, Springer Verlag, Berlin,
Heidelberg, 2769, 288-299 (2003).

Stathopoulos, P., Soumplis, A., Houssos, N., “The case
study of an F/OSS virtualization platform
deployment and quantitative results”, 5th
International Conference on Open Source Systems,
Skövde, Sweden (2009).

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1007/3-540-44796-2
http://dx.doi.org/10.1007/3-540-44796-2
http://dx.doi.org/10.1007/3-540-44796-2
http://dx.doi.org/10.1007/3-540-44796-2
http://dx.doi.org/10.1007/978-3-540-45175-4_27
http://dx.doi.org/10.1007/978-3-540-45175-4_27
http://dx.doi.org/10.1007/978-3-540-45175-4_27
http://dx.doi.org/10.1007/978-3-540-45175-4_27
http://dx.doi.org/10.1007/978-3-540-45175-4_27
http://helios-eie.ekt.gr/EIE/handle/10442/8124
http://helios-eie.ekt.gr/EIE/handle/10442/8124
http://helios-eie.ekt.gr/EIE/handle/10442/8124
http://helios-eie.ekt.gr/EIE/handle/10442/8124
http://helios-eie.ekt.gr/EIE/handle/10442/8124

	procs_INFO_2011 218
	procs_INFO_2011 219
	procs_INFO_2011 220
	procs_INFO_2011 221

