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Abstract. Similarity search involves finding all the face-images in a database, 
which are similar to a desired face-image, based on some distance measure. 
Comparing the desired face-image to all the face-images in a large dataset is 
prohibitively slow. If face-images can be placed in a metric space, search can be 
sped up by using a metric data structure. In this work, we evaluate the 
performance of range queries with metric data structures (LAESA, VPtree, 
DSAT, HDSAT1, HDSAT2, LC, RLC and GNAT) when the metric spaces are 
face-images data with the Euclidean distance. The experimental results show 
that all data structures reduce the ratio between the number of distances 
computed and the database size. Moreover, the LAESA has the best 
performance in the majority of the experimental cases, but the RLC competes 
with the other metric data structures, and has the best results when compared 
with the other dynamic metric data structures. 
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1   Introduction 

With the rapid increase in the use of digital technology, large amounts of image data 
sets will soon be accumulated. Face-images browsing is based on the concept of 
similarity between face-images, i.e. searching face-images which are very similar or 
close to a given face. Each face-image is represented as a vector of numeric properties 
(features) extracted from the contend-based image. The similarity between two images 
is associated with a function, which measures the distance between their feature 
vectors. When this function is metric, the set of face-images defines a metric space. 

Most of the actual work in face-images is about face detection and face recognition. 
In these works, the similar searching for a given face-image leads to an exhaustive 
search in the dataset, so the response time will be very long and the search will 
became ineffective. For this reason, it is necessary to introduce new techniques that 
can deal with this problem efficiently. 

In order to have efficient similar searching in metric spaces, several metric data 
structures have been proposed [1,2]. These data structures partition the database based 
on the distances between a set of selected objects and the remaining objects. Space 
partitions seek to minimize the exhaustive search, i.e. at search time, some subsets are 
discarded and others are exhaustively searched. The distance-based indexing method 



may be pivot-based or cluster-based [1]. Some of the data structures using the pivot-
based method are the VP-Tree [3] and the MVP-Tree [4]. There are variants of the 
pivot-based method, used in LAESA [5]. Some of the data structures using cluster-
based method are the GNAT [6], the HDSAT [7], the LC [8] and the RLC [9]. The 
RLC was already evaluated in different application domains [10, 11, 12]. 

Our main goal is to evaluate the use and the efficiency of similar searching with 
metric data structures in face-images databases with Euclidean Distance.  This study 
involves four databases of face-images: Faces94 [13], Jaffe [14], Yalefaces [15] and 
AT&T [16], and comprises 8 metric data structures: LAESA, VPtree, DSAT, 
HDSAT1, HDSAT2, LC, RLC and GNAT. 

The rest of the paper is structured as follows. In Section II, we recall some basic 
notions on range query in metric spaces. Section III is devoted to the characterization 
of the metric space over face-images data. Then Section IV reports on the 
experimental results. Conclusions and future work are drawn in Section V. 

2   Range Queries in Metric Spaces 

A metric space is a pair (U,d), where U is a set of objects, called the universe, and d: U 
x U ⇒ ℜ+

o is a function, called distance, that satisfies the three following properties: 
(1) strict positiveness: d(x,y) ≥ 0 and d(x,y) = 0 ⇔ x = y; (2) symmetry : d(x,y) = 
d(y,x)  and (3) triangle inequality: d(x,y) ≤ d(x,z) + d(z,y). 

A database over a metric space (U,d) is a finite set B⊆U. The problem raised by 
range queries is to yield the set of all database objects whose distance to a given object 
does not exceed a certain amount. Formally, given a database B over a metric space 
(U,d), a query point q ∈ U, and a query radius r ∈ ℜ+, the answer to the range query 
(q,r) is the set {x ∈ B | d(x,q) ≤ r}. 

Metric data structures seek to minimize the number of distance computations 
performed in range queries. During the computation of a range query (q,r) in a 
database over a metric space (U,d), triangle inequality and symmetry are used to 
discard elements of the database without computing the associated distance to the 
query object. Given a query element q and a query radius r, an element x may be left 
out without the need for evaluating d(q,x). This will arise if there is an object o where 
|d(q,o) – d(x,o)| > r. In this case, it is not necessary to compute d(q,x) since we know 
that d(q,x) > r, based on the triangle inequality.  

It is important to remark that the range queries are hard to compute in high 
dimension metric space [2]. It is well known that the metric space dimension grows 
with the mean and decreases with the variance. 

3   Face-Images Metric Space   

Our experiments involve four face-images databases, which were already used in 
related works [17, 18, 19]. The databases used are: 

• Faces94 – This database is available in [13].  The images are stored in 24 bit 
RGB, JPEG format and the size of each image is 180 x 200 pixels.  



• Jaffe – This database is available in [14]. The images are stored in TIFF format 
and the size of each image is 256 x 256 pixels. 

• Yalefaces- This database is available in [15]. The images are stored in GIF 
format and the size of each image is 320 x 243 pixels. 

• AT&T- This database is available in [16]. The images are stored in PGM and 
the size of each image is 92x112 pixels, with 256 grey levels per pixel. 

In these databases, all the images are frontal face-images of different individuals in 
different facial expressions. In table 1 we present the size of each database. 

3.1   Face-Image Representation  

Each face-image is represented by a feature vector, which describes the face according 
to a training set of face-images. The method used to extract this feature vector was 
based on the method of Eigenfaces. The steps involved in creating a set of eigenfaces 
are:  

• Define a training set: each image is seen as one vector, simply by 
concatenating the rows of pixels in the image. So an image with r rows and c 
columns is therefore represented as a vector with r x c elements. All images in 
the training set are stored in a single matrix T, where each row is an image; 

• Calculate the average image and subtract it from each image in T; 
• Calculate the eigenvectors and eigenvalues of the covariance matrix S. The 

eigenvectors of this covariance matrix are called eigenfaces; 
• Choose the principal components by keeping the eigenvectors with the largest 

associated eigenvalue. 
The fundamental idea of this method is to project the face-images on the eigenfaces 

created. So, each face-image is a vector of features S = <f1, …, fn>, where n is less than 
or equal to the size of the training database. In our experiment, the size of the training 
set is 25 face-images. For further details of the method of Eigenfaces, the reader is 
referred to [20].   

3.2   Similarity between Face-Images 

In our experiment, the similarity between two face-images is based on the similarity 
between the associated feature vectors, which is computed with the Euclidean distance. 
Let S = <f1s, …, fns> and T = <f1t, …, fnt)> be feature vectors associated with two 
face-images S and T. The Euclidean distance between S and T, denoted by ED(S,T), is 
defined by: 

ED(S,T) = √ ∑i=1..n (fis – fit)
2. (1) 

In order to study the metric spaces, we have computed the histogram of distances 
between any two face-images of each database. In Table 1, we present the mean and 
the variance of the histogram of distances for each database. 

An immediate conclusion is that our metric spaces have different dimensions. The 
dimension is highest for the Jaffe database, where the quotient between the mean and 
the variance is 2.7710. The other metric spaces have lowest dimension. 



Table 1.  Database Size and Mean and Variance of the Histogram of Distances 

Database Size(images) Mean Variance Mean/Variance 
Faces94 3040 9137.49 7936650.53 0.0012 
JAFFE 213 10749.96 15050638.74 2.7710 

Yalefaces 165 19293.42 37809562.91 0.0005 
AT&T 400 3008.78 617807.58 0.0049 

3.3   Evaluation of Euclidean Distance in the Databases 

The Euclidean distance was evaluated in the 4 databases with the ROC (Receiver 
Operating Characteristics) analysis, based on the true positive rate and the false 
positive rate. In all the databases, the results show that the false positive rate 
(irrelevant results) is less than 0.1 and the true positive rate (relevant results) is bigger 
than 0.5. The Euclidean distance shows better results with the Faces94 database and 
worse results with the Yalefaces database. For lack of space, this evaluation can not 
be presented here. 

4  Evaluation of the Metric Data Structures 

The goal of this section is to evaluate the behavior of range queries with metric data 
structures (LAESA, VPTree, DSAT, HDSAT1, HDSAT2, LC, RLC and GNAT) over 
face-images data with the Euclidean distance.  

For each database, four files were generated. The smallest was used as the query 
set of faces and is composed by random faces from the database. In order to maintain 
the same number of different individuals in this set, we choose randomly 25% of the 
face-images associated to each individual. Table 2 presents the size of the query set 
for each database. The other three files are random permutations of the database. The 
justification for making use of three equal sets lies on the fact that the final shape of 
some data structures depends on the order in which the objects occur in the input of 
the construction algorithm. 

In order to compute the range queries with the metric data structures we choose 
two different query radii for each database. The first one is 25% and the second is 
50% of the database distances mean (see Table 2).  

Table 2. Size of the Query Set and Query Radii for each Database 

Database Size(query set) 1st Query Radius 2nd Query Radius 
Faces94 760 2284 4569 
JAFFE 50 2687 5374 
AT&T 80 752 1504 

Yalefaces 30 4823 9646 

 



For each database, we submitted the set of query faces associated with the database 
with the two radii. In Table 3, we present the average number of face-images retrieved 
in range queries for each query, and the associated percentage of the database size. 

Table 3. Average number of face-images retrieved in range queries, and the associated 
percentage of the database size  

Database 1st Query Radius 2nd Query Radius 
 Num Percent Num Percent 

Faces94 15.94 0.52% 109.79 3.61% 
JAFFE 6.76 3.17% 21.94 10.3% 
AT&T 2.35 0.59% 12.83 3.21% 

Yalefaces 3.7 2.24% 11.43 6.93% 
 

In each experimental case (a database, a query set and a query radius), we compute 
the average number of distance computations done for each face-image query. So, the 
results presented are the mean of the results obtained to query the three sets associated 
to the database. 

4.1   Metric Data Structures Parameterizations 

The eight metric data structures were parameterized in order to obtain the best results 
for each database: 

• LAESA: The Linear Approximating and Eliminating Search Algorithm was 
parameterized with 44 prototypes for Faces94, 8 prototypes for JAFFE, 22 
prototypes for AT&T and 23 prototypes for Yalefaces.   

• VP-tree: This data structure does not have parameters. 
• DSAT: The Dynamic Spatial Approximation Tree was parameterized with 

arity 3 for Faces94, Jaffe and Yalefaces, and with arity 5 for AT&T. 
• HDSAT1: The Hybrid Dynamic Approximation Tree 1 was parameterized 

with arity 5 for Faces94, 6 for JAFFE and AT&T, and 9 for Yalefaces. 
• HDSAT2: The Hybrid Dynamic Approximation Tree 2 was parameterized 

with arity 8 for Faces94, 6 for JAFFE and AT&T and 9 for the Yalefaces. 
• LC: The List of Clusters we was parameterized with cluster radius 2995 for 

Faces94, 7130 for JAFFE, 1400 for AT&T and 8795 for Yalefaces. 
• RLC: The Recursive List of Clusters was parameterized with cluster radius  

3575 and array capacity 20 for Faces94, cluster radius 6750 and array 
capacity  11 for JAFFE, cluster radius 1840 and array capacity 9 for AT&T 
and cluster radius 9450 and array capacity 11 for Yalefaces. 

4.2   Experimental Results 

Figures 1 and 2 show, for each database, the average number of distance 
computations done with each query with the two query radii. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Average number of distance computations in Faces94 and JAFFE databases 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 2. Average number of distance computations in AT&T and Yalefaces databases 
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These graphics show that LAESA outperforms all the data structures, except in the 
Faces94 database with query radius 4569, where RLC achieves the best result, and in 
Yalefaces database with radius 4823, where the GNAT is the best. 

When we compare the four dynamic metric data structures (DSAT, HDSAT1, 
HDSAT2 and RLC) we conclude that, in the majority of the experimental cases (5 of 
8 cases), RLC is the data structure with the best results. 

The results from this experiment show that all the metric data structures reduce the 
ratio between the number of distances computed and the size of the database. Table 5 
presents the percentage for each data structure and each database. 

Table 5.  The Percentage of Distance Computations According to the Database Size 

Database Faces94 JAFFE AT&T Yalefaces 
Query radius 2284 4568 2687 5474 752 1504 4823 9646 

LAESA 5.38% 29.25% 12.39% 31% 8.86% 32.76% 18.52% 30,77% 
VPTree 12.14% 32.71% 22.58% 45.4% 27.68% 62.01% 28.61% 54,67% 
DSAT 11.72% 27.36% 28.67% 48.6% 35.96% 63.01% 29,04% 50,06% 

HDSAT1 7.25% 19.5% 21.33% 38.91% 24.86% 49.6% 20.78% 39,7% 
HDSAT2 6.57% 18.6% 19.6% 36.29% 22.63% 46.26% 19.25% 36,75% 

LC 8.57% 26.76% 22.3% 41.71% 22.56% 46,7% 19,98% 41,23% 
RLC 6.27% 18.17% 19.55% 35.48% 22.67% 45,83% 22,27% 38.76% 

GNAT 6.5% 19.46% 16.64% 35.38% 22.44% 50.72% 17,44% 39.03% 

5 Conclusion and Future Work 

The need to speed the similar searching of face-images leads us to evaluate the 
performance of range queries with several metric data structures over face-images 
data. It is important to remark that there are few works which compare different 
techniques in the face-image domain. 

With respect to the face-images data representation and the Euclidean distance (our 
metric space), we have good similar search results in these databases. However, we 
need to compare these results with the results obtained in face-images databases, 
where the data are described by local features (i.e., noise, eyes) and/or with others 
metric functions. 

With respect to the efficiency of the range queries with metric data structures, the 
results leave us to conclude that the metric data structures speed the range query in the 
four databases. This conclusion is based on the observation that a lot of face-images 
are discarded without computing the associated distance to the face4-image query. 
The LAESA data structure has the best performance in all the databases, except in 
two experimental cases. In the majority of the experimental cases, the RLC data 
structure competes with the other metric data structures, and it is the best dynamic 
metric data structure in the majority of the experimental cases. 
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