
metamidi: a tool for automatic metadata extraction
from MIDI files

Tomás Pérez-Garcı́a, José M. Iñesta, and David Rizo
Departamento de Lenguajes y Sistemas Informáticos

University of Alicante
Alicante, 03080, Spain

e-mail: {tperez,inesta,drizo}@dlsi.ua.es

Abstract—The increasing availability of on-line music has
motivated a growing interest for organizing, commercializing,
and delivering this kind of multimedia content. For it, the use of
metadata is of utmost importance. Metadata permit organization,
indexing, and retrieval of music contents. They are, therefore,
a subject of research both from the design and automatic
extraction approaches. The present work focuses on this second
issue, providing an open source tool for metadata extraction
from standard MIDI files. The tool is presented, the utilized
metadata are explained, and some applications and experiments
are described as examples of its capabilities.

I. INTRODUCTION

Metadata permit organization, indexing, and retrieval of
music contents in digital collections, e.g. digital libraries [10]
or on-line music stores, to name but a few. A digital music
library requires addressing complex issues related to descrip-
tion, representation, organization, and use of music informa-
tion [9]. Another application of accurate metadata is related
to copyright issues when sharing of music databases among
music researches located in different countries. A suitable
solution is the use of metadata instead of the source song files.
The presented tool along with its helper formats can help in
that direction.

Metadata are, therefore, an important subject of research fo-
cusing on both the design and automatic extraction approaches.
The quality of content-based music recommendations is im-
portantly influenced by the number and quality of available
metadata attributes [3].

A number of efforts have been addressed to automatic meta-
data extraction from music data, both from audio and symbolic
files. For example, MPEG-7 [6] deals with multimedia content
description. In this context, Pachet in [11] described a project
on the automatic computation of those descriptors focusing
on digital audio data, while Kleedorfer et al. [4] aimed at
generation of metadata attributes automatically extracted from
song lyrics. Some of these metadata are utilized, through
standard text classification methods, to derive genre, mood,
and offensive content tags.

The present work focuses on metadata extraction from
standard MIDI files, introducing metamidi, an open source
tool for metadata extraction from them. A number of works
in the literature have deal with related problems, reporting
MIR platforms for symbolic file format analysis in different
languages like Matlab [2] or java [8]. These works are able to

analyze technical properties of music formats, ranging from
Humdrum, Lilypond ([5]) or MIDI ([2], [8]). Some of these
works are based on solving a music information retrieval
(MIR) problem, like genre extraction from content, while
others are application-independent. Our proposal falls in the
latter category, focusing on metadata like text metaevents,
key, tempo, and meter signatures, etc., although some sta-
tistical properties based on track contents are also provided.
This range of data, permits to address organization oriented
problems, like categorization and indexation of MIDI files,
but also well know MIR problems like melody part or genre
recognition.

A special attention has been paid to interfacing with other
programs for metadata analysis, so the software has been
designated to operate in command line.

The rest of the paper is structured as follows. The ob-
tained metadata are explained in section II, the metamidi
tool is presented in section III, and some applications and
experiments are described in section IV as examples of its
capabilities.

II. MIDI METADATA

metamidi extracts descriptive, structural, and technical
metadata at two different levels: global and track-local meta-
data. Output is provided in three different formats:
• register format, where metadata are presented in a report

style useful for readability,
• line format, oriented to communication with other soft-

ware for further processing, and
• XML format, providing a standard and modern format

for interfacing with other applications. The use of XML-
based format has proven to be useful in former works [1].

More details on these formats are provided below in sec-
tion III.

A. Description of global metadata

In this section the general metadata extracted from a MIDI
file, are described. These metadata are extracted from the file
storage system, from its header, and from its sequence tracks.
• Name, the complete path where the MIDI file is stored.
• Metaeventtext, strings contained in text metaevents. This

information includes all kind of text metaevents found

WEMIS 2009 36 Oct 01-02, 2009 | Corfu, Greece

in the track 0 of a MIDI file, like author, song name,
copyright notices, sequencer, etc.

• Size, the size in bytes of the file.
• Format, the format of a MIDI file. 0 for single track; 1

for multi-track files, and 2 for multi-sequence files.
• Number of tracks, the number of tracks that the file is

composed of.
• Resolution, the number of ticks per beat.
• Tempo, initial value for tempo in beats per minute.
• Tempo changes, the number of tempo change events.

Tempo tracking has not been implemented, due to the
large number of changes that may appear if accelerandos
or rittardandos are present in the sequence.

• Meter, the list of number of beats per bar over beat
kind separated by commas. The pulse where it changes
is showed between brackets.

• Meter changes, the number of meter changes.
• Key, the list of tonality metaevent in the file. The pulse

where it changes is showed between brackets.
• Key changes, the number of tonality changes.
• Instruments, the numbers of the General MIDI patches

utilized in the sequence.
• Percussion, the percussion instruments utilized in the

sequence according to the pitch values utilized in channel
10, assuming the General MIDI standard percussion map.
Percussion instruments have been categorized in three
different groups, coded as follows:

– 1 : instruments usually found in a drum kit,
– 2 : latin percussion, and
– 3 : other percussion elements.

• Sequence duration, the number of clock ticks where the
offset of the last note happens.

• Has sysex, a flag showing whether sysex messages appear
(value 1) in the sequence or not (value 0).

B. Description of each track metadata:
The second level of metadata are descriptions of each track

content. Therefore, the metadata described below are for each
track.
• Metaeventtext, strings contained in text metaevents in-

cluded track, like track name, instrument name, lyrics,
markers, etc.

• Track duration, the number of ticks from the onset of
the first note to the offset of the last note in the track.

• Duration rate, = track duration / sequence duration.
• Occupation, the sum of the number of ticks where notes

are sounding in the track.
• Occupation rate, = occupation / track duration.
• Polyphony duration rate, ticks where two or more notes

are sounding / occupation.
• max polyphony, the number of maximum simultaneous

notes in the track.
• Avg polyphony, number of sounding notes in average

(weighted by their durations), computed as

=
∑
∀n>0 n× (#ticks with n notes)

occupation
(1)

• Low pitch, lowest pitch in the track.
• High pitch, highest pitch in the track.
• Modulations, number of modulation messages.
• Aftertouches, number of aftertouch messages.
• Pitch bends, number of pitch alteration messages.
• Program changes, patch change messages. The pulse

where it changes is showed between brackets.

III. THE metamidi TOOL

metamidi can be freely downloaded from
http://grfia.dlsi.ua.es/gen.php?id=resources. In
the downloading page the reader can find the source code of
metamidi, the DTDs listed in Table I, and an alternative
XSD format 1 that can help in the automatic developing
of automatic parsers like the one programmed in Java with
XMLBeans 2 that is also provided.

It has been developed in ANSI C 4.2.4 version and tested
under Linux. It is designed to operate in the command line,
providing the different output formats, with this syntax:

metamidi -{r|x|l} file [-o fileoutput]

where:

-r : outputs metadata in register format.
-l : outputs metadata in line format. A “|” separates the

global metadata from track metadata and also the
different track metadata parts. A “;” character is used
to separate each feature. “,” character separates multi-
valuated features.

-x : outputs metadata in XML format. A DTD is provided
where tags and attributes are described (see Table I)

When a string metadata is not found, a “$” is given. For
missing numerical values, a −1 is displayed.

If no output file is provided, the standard output is utilized,
providing a way to pipe the result to other data processing
software that uses the standard input as input. This permits
to design powerful scripts using off-the-shelf text and data
processing utilities.

In table II an example of a two-track MIDI file is displayed
when metamidi operates in report format.

IV. APPLICATION EXAMPLES

The kind of extracted metadata can be used in a number of
applications like MIDI file indexing, organizing, classifying,
etc. In this section, two well known MIR problems have been
addressed using the provided metadata. Firstly, we will report
results on selecting the track containing the melody in a multi-
track MIDI file, and secondly, we will present results of an
experiment on genre classification using the timbral metadata
provided by the patch instrument map in the file.

1http://www.w3.org/XML/Schema
2http://xmlbeans.apache.org/

WEMIS 2009 37 Oct 01-02, 2009 | Corfu, Greece

TABLE I
PROPOSED DTD

<!ELEMENT midifile (external,global,tracks)>
<!ELEMENT external (comments?)>
<!ATTLIST external

name CDATA #REQUIRED
size CDATA #REQUIRED
midiformat (0|1|2) #REQUIRED
numtracks CDATA #REQUIRED
resolution CDATA #REQUIRED

>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT global (comments?)>
<!ATTLIST global

metaeventtext CDATA #REQUIRED
tempo CDATA #REQUIRED
tempoChanges CDATA
meter CDATA #REQUIRED
meterChanges CDATA
key CDATA #REQUIRED
keyChanges CDATA
instruments CDATA
percussion (-1|1|2|3)
duration CDATA #REQUIRED
hasSysEx (true|false) #REQUIRED

>
<!ELEMENT tracks (track+)>
<!ELEMENT track (comments?)>
<!ATTLIST track

metaeventtext CDATA #REQUIRED
channel CDATA #REQUIRED
duration CDATA #REQUIRED
durationRate CDATA #REQUIRED
occupation CDATA #REQUIRED
occupationRate CDATA #REQUIRED
polyphonyDurationRate CDATA #REQUIRED
maxPoliphony CDATA #REQUIRED
avgPoliphony CDATA #REQUIRED
low pitch CDATA #REQUIRED
high pitch CDATA #REQUIRED
modulations CDATA
afterTouches CDATA
pitchBends CDATA
programChanges CDATA

>

A. Melody track selection

Standard MIDI files are structured as a number of tracks.
One of them usually contains the melodic line of the piece,
while the other tracks contain accompaniment music. Finding
that melody track is very useful for a number of applications,
including music retrieval or motif extraction, among others.
In [12] the authors introduced a method to identify the track
that contains the melody using statistical properties of the
musical content and pattern recognition techniques.

Here we are going to use metadata extracted through
metamidi to perform the same task under a Gaussian
approach. For that, we can compute the probability of a track
to contain the melody of a MIDI file from different track
metadata:

• the amount of music information in the track (occupation
rate),

• melody are usually monophonic, so the use of polyphony
is important (polyphony duration rate, max polyphony,

TABLE II
OUTPUT EXAMPLE OF A TWO TRACK MIDI FILE USING THE “REPORT”

FORMAT.

name: /home/repository/Beethoven/Fur-Elise.mid
text metaevent: Fur Elise,Ludwig van Beethoven
size: 9574
format: 1
num tracks: 3
resolution: 480
tempo: 75.00
tempo changes: 25
meter: 4/4(0),3/8(0),3/8(5760)
meter changes: 3
key: CM(0)
key changes: 1
instruments: 1
percussion: -1
duration: 90000
has sysex: 0
------ Features of track 1 ----
text metaevent: Piano RH
channel: 1
duration: 89968
duration rate: 1.00
occupation: 75348
occupation rate: 0.84
polyphony duration rate: 0.20
max polyphony: 4
avg polyphony: 1.30
low pitch: 57
high pitch: 100
modulations: 0
aftertouches: 0
pitch bends: 0
program changes: 1(0)
------ Features of track 2 ----
text metaevent: Piano LH
channel: 2
duration: 90000
duration rate: 1.00
occupation: 39587
occupation rate: 0.44
polyphony duration rate: 0.19
max polyphony: 3
avg polyphony: 1.23
low pitch: 33
high pitch: 76
modulations: 0
aftertouches: 0
pitch bends: 0
program changes: 1(960)

average polyphony),
• for a melody to be sung it must be cantabile, so the pitch

ranges are relevant (low pitch and high pitch).
In the training phase, given one of the former metadata,

d, its probability distribution function is computed assuming
a Gaussian distribution, both for the metadata values of the
tracks labeled as melodies, obtaining P (d|M), and for those
extracted from non melody tracks, obtaining P (d|¬M).

During the test phase, in order to select the melody track
from a midi file, the a posteriori probabilities for all the tracks
are computed using the Bayes theorem:

P (M |di) =
P (di|M)P (M)

P (di|M)P (M) + P (di|¬M)P (¬M)
(2)

where i subindex refers to the values extracted from the i-th
track. The a priori probability for a track of being a melody,
P (M) is computed from all the files in the training set as
number melody tracks / total number of tracks, and P (¬M) =

WEMIS 2009 38 Oct 01-02, 2009 | Corfu, Greece

1− P (M).
The final decision is taken using a maximum likelihood

decision taking into account those tracks with probabilities
higher than a threshold, θ:

t̂M = arg max
i
{P (M |di) > θ} (3)

If no track has a P (M |di) > θ, the decision of “no melody”
is given for that file.

There is also the possibility of combining two probability
distributions. The same methodology is applied, but in this
case, the two Gaussians involved are multiplied, so P (d|M) =
P (dA|M)×P (dB |M), and therefore, the same has to be done
with the respective decision thresholds, θ = θA×θB . The rest
of equations remain the same.

The same 6 data sets previously utilized in [12] have been
utilized for the experiments. Midi files from pop-rock (“Kar”),
jazz (“Jazz”), and classical music (“Clas”) are organized in
the different data sets in order to test the specificities of
this problem depending on the music genre. The sets with a
“200” suffix are smaller sets, more uniform in their structure,
while the other three are bigger ones, more heterogeneous and,
therefore, more difficult for their melody track to be identified.
All of them have been manually tagged and multiple melody
track and no melody track situations occur.

The system is evaluated as follows. Defining TP as the
number of true positive decisions, FP as the number of false
positive decisions, TN the number of true negative decisions,
and FN as the number of false negative decisions, the evalu-
ation parameters were:

Success : S = 100
TP + TN

TP + FP + TN + FN
(4)

Precision : P =
TP

TP + FP
(5)

Recall : R =
TP

TP + FN
(6)

F−measure : F =
2RP
R+ P

(7)

The figures presented in Table III are the results of a 10-fold
cross-validation, where 10 sub-experiments were performed,
using 9/10 of the set for training, keeping 1/10 for testing.
The results presented are the best obtained for each data
set, including the metadata they were obtained with and the
utilized threshold.

B. Timbre-based genre classification

The timbral information provided by metamidi can be
utilized to infer the genre of the music the MIDI file contains.
In fact, there are examples in the literature of using the set
of instrument patch numbers (together with other descriptors)
to classify MIDI files into music genres [7]. In that work,
instrument patch numbers are coded in a vector and a distance-
based method to instrument class vectors is used to classify.
Nevertheless, the approach proposed here is a probabilistic
one, in which a MIDI file has a probability of being of a

TABLE III
RESULTS OF MELODY TRACK IDENTIFICATION FOR THE DIFFERENT DATA

SETS.

Corpus Descr. θ S% P R F

Clas200 High p. 0.05 98.5 0.99 1.00 0.99

Clas Avg.Poly 0.20 80.8 0.81 1.00 0.89

Jazz200 Max.Poly & Low p. 0.12 86.5 0.88 0.98 0.93

Jazz Max.Poly & Low p. 0.052 82.0 0.83 0.99 0.90

Kar200 Avg.Poly 0.10 80.9 0.81 1.00 0.89

Kar Avg.Poly 0.10 88.6 0.87 1.00 0.94

given genre depending on the probabilities of its instruments
to be used in that genre.

We have a set of classes C =
{
c1, c2, . . . , c|C|

}
and a labeled

training set of songs, X =
{
x1,x2, . . . ,x|X |

}
. A MIDI file is

represented as a vector x, where each component xi ∈ {0, 1}
codes the absence or presence of the patch t in the instruments
and percussion metadata. The dimensionality of the vectors is
D = 131, corresponding to the 128 General MIDI patches
plus the 3 percussion categories described in section II. A
given MIDI file is assigned to the class cj ∈ C with maximum
a posteriori probability:

P (cj |x) =
P (cj)P (x|cj)

P (x)
, (8)

where P (cj) is the a priori probability of class cj computed
in this case as P (cj) = 1/|C|, assuming that all genres are
equally probable, P (x) =

∑|C|
j=1 P (cj)P (x|cj) is a normaliza-

tion factor, and P (x|cj) is the probability of x being generated
by class cj given by a multivariate Bernoulli distribution of
instruments in class cj , learned from the training set:

P (x|cj) =
D∏

i=1

xiP (ti|cj) + (1− xi)(1− P (ti|cj)) (9)

where P (ti|cj) are the class-conditional probabilities of each
patch, ti, in the instrument map, that can be easily calculated
by counting the number of occurrences of each instrument in
the corresponding class:

P (ti|cj) =
1 +Mij

2 +Mj
(10)

where Mij is the number of files in class cj containing the
instrument ti, and Mj is the total number of songs in class
cj . This equation permits to avoid zero probabilities when a
previously unseen instrument is found in the test file.

A data base of 856 midi files from popular, jazz, and
academic music has been utilized. Popular music data have
been separated into three sub-genres: pop, blues, and celtic
(mainly Irish jigs and reels). For jazz, three styles have
been established: a pre-bop class grouping swing, early, and
Broadway tunes, bop standards, and bossanovas as a rep-
resentative of latin jazz. Finally, academic music has been
categorized according to historic periods: baroque, classicism,

WEMIS 2009 39 Oct 01-02, 2009 | Corfu, Greece

and romanticism. This data base is available upon request to
the authors.

The input metadata for this application have been easily
obtained through the following command (syntax needs to be
adapted to the used console language):

metamidi -l *.mid | cut -d ";" -f 13,14

positions 13 and 14 correspond to instruments and percussion
metadata, respectively, in the output line.

Tables IV and V show the confusion matrices for the two
experiments performed, respectively, grouping the files in the
three broad music categories (popular, jazz, and academic)
and in the nine classes described above. Rows are the ground-
truth classes and columns are the system predictions. Both ex-
periments were designed following a 10-fold cross validation
scheme.

TABLE IV
CONFUSION MATRIX FOR THE THREE GENRE RECOGNITION TASK.

Academic Jazz Popular

Academic 228 6 1

Jazz 3 295 40

Popular 5 16 262

The overall performance for the three-classes classification
was 93±2, showing the good performance of timbral metadata.
For the nine-classes problem, a much harder one, the overall
classification success was 68 ± 5. Note that a by-chance
classifier is expected to achieve 33 and 11%, respectively. Also
it is important to see that most of the errors occur now among
genres of the same broad category, like classical and romantic
music, or pre-bop and bop songs.

TABLE V
CONFUSION MATRIX FOR THE NINE GENRE RECOGNITION TASK.

bar clas rom pre bop bos cel blu pop

baroque 33 4 13 0 0 0 0 0 0
classic 7 0 37 0 0 0 0 0 1

romantic 6 5 102 3 0 0 0 0 0

prebop 0 0 1 136 19 4 0 0 0
bop 0 0 0 70 8 6 0 0 0

bossa 0 0 0 2 1 49 1 0 5

celtic 0 0 1 0 1 2 85 0 0
blues 0 0 0 7 0 1 3 55 9
pop 0 1 0 1 1 13 3 7 64

V. CONCLUSION

Metadata are achieving a growing interest in music informa-
tion retrieval applications thanks to the high level information
they provide. The development of systems for automatically
extract them from digital files is one of the main concerns. In
this paper, metamidi has been presented as an open source
software for descriptive, structural, and technical metadata

extraction from standard MIDI files. These metadata are
extracted from both file properties and track properties.

An illustration of its performance has been presented ad-
dressing two MIR problems through the use of the provided
metadata: melody track identification and music genre recog-
nition. The good performances obtained show the power of
metadata automatic extraction tools for organizing, indexing,
and accessing music information in the context of multimedia
digital libraries.

ACKNOWLEDGMENT

This work is supported by the Spanish Ministry projects:
TIN2006–14932–C02 and Consolider Ingenio 2010 (MIPRCV,
CSD2007-00018), both partially supported by EU ERDF.

REFERENCES

[1] A. Baratè, G. Haus, and L. A. Ludovico, Music representation of score,
sound, MIDI, structure and metadata all integrated in a single multilayer
environment based on XML. Hershey, PA: Idea Group Reference, 2007.

[2] T. Eerola and P. Toiviainen, “Mir in matlab: The midi toolbox,” in ISMIR,
2004, pp. 22–27.

[3] F. Kleedorfer, U. Harr, and B. Krenn, “Making large music collections
accessible using enhanced metadata and lightweight visualizations,” in
Proceedings of the 3rd International Conference on Automated Produc-
tion of Cross Media Content for Multi-Channel Distribution (AXMEDIS
’07), Barcelona, Spain, November 2007, pp. 138–144.

[4] F. Kleedorfer, P. Knees, and T. Pohle, “Oh oh oh whoah! towards
automatic topic detection in song lyrics,” in Proceedings of the 9th
International Conference on Music Information Retrieval (ISMIR 2008),
September 2008, pp. 287–292.

[5] I. Knopke, “The perlhumdrum and perllilypond toolkits for symbolic
music information retrieval,” in Proceedings of the 2008 International
Conference on Music Information Retrieval, 2008, pp. 147–152.

[6] B. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG7:
Multimedia Content Description Interface. West Sussex, England: John
Wiley & Sons, 2002.

[7] C. McKay and I. Fujinaga, “Automatic genre classification using large
high-level musical feature sets,” in Proc. of the 5th International
Conference on Music Information Retrieval, ISMIR 2004, 2004, pp. 525–
530.

[8] C. Mckay and I. Fujinaga, “jsymbolic: A feature extractor for midi files,”
in In Int. Computer Music Conf, 2006, pp. 302–305.

[9] N. Minibayeva and J. W. Dunn, “A digital library data model for music,”
in Proc. of the Second ACM/IEEE-CS Joint Conference on Digital
Libraries, Portland, Oregon, 2002, pp. 154–155.

[10] M. Notess and J. Dunn, “Variations2: improving music findability in a
digital library through work-centric metadata,” in JCDL’04: Proceedings
of the 4th ACM/IEEE-CS joint conference on Digital libraries. Tucson,
AZ: ACM Press, 2004, p. 422.

[11] F. Pachet, “Metadata for music and sounds: The Cuidado project,” in
Proceedings of the CBMI Workshop, University of Brescia, september
2001, pp. 411–415.

[12] D. Rizo, P. J. P. de León, C. Pérez-Sancho, A. Pertusa, and J. M. Iñesta,
“A pattern recognition approach for melody track selection in midi files,”
in Proc. of the 7th Int. Symp. on Music Information Retrieval ISMIR
2006, T. A. Dannenberg R., Lemström K., Ed., Victoria, Canada, 2006,
pp. 61–66.

WEMIS 2009 40 Oct 01-02, 2009 | Corfu, Greece

	ECDL2009_Workshop_Notes 159
	ECDL2009_Workshop_Notes 160
	ECDL2009_Workshop_Notes 161
	ECDL2009_Workshop_Notes 162
	ECDL2009_Workshop_Notes 163

