A Novel Web Archiving Approach based on Visual Pages
Analysis

Myriam Ben Saad
LIP6, University P. and M. Curie
Paris, France
Myriam.Ben-Saad@lip6.fr

ABSTRACT

Due to the growing importance of the World Wide Web,
archiving the web has become a cultural necessity in pre-
serving knowledge. To maintain a web archive up-to-date,
crawlers harvest the web by iteratively downloading new ver-
sions of documents. However, it is frequent that crawlers
retrieve pages with unimportant changes such as advertise-
ments which are continually updated. Hence, web archive
systems waste time and space for indexing and storing use-
less page versions. In this paper, we present a novel approach
that detects important changes between versions in order to
efficiently archive the web. Our approach combines the con-
cept of the visual pages segmentation with the concept of
importance while detecting changes between versions. The
approach consists of archiving the visual layout structure
of a web page represented by semantic blocks. We propose
an adequate changes detection algorithm to compute differ-
ences between these visual layout structures of documents.
‘We describe also a method to evaluate the importance of de-
tected changes. Tests were conducted to evaluate the feasi-
bility of our approach. Experimental results show promising
performances of our approach.

Keywords

Web archiving, change detection, visual pages analysis

1. MOTIVATION

With the explosive growth of the Internet, the web has be-
come the largest repository of content (on-line newspapers,
articles, published documents, etc.). Such content provides
a big amount of useful knowledge in many areas. Archiving
the web is crucial for preserving useful source of informa-
tion. For this reason, it has become an issue for many na-
tional archiving institutes around the world. However, the
web is highly dynamic, evolving over time (pages change
frequently). Most often, web archiving is automatically per-
formed using web crawlers. Web crawlers visit web pages
to be archived and build a snapshot and/or index of web

IWAW 2009 International Web Archiving Workshop
This work is licenced under an Attribution-NonCommercia-NoDerivs 2.0
France Creative Commons Licence.

Stéphane Gancarski
LIP6, University P. and M. Curie
Paris, France
Stephane.Gancarski@lip6.fr

Zeynep Pehlivan
LIP6, University P. and M. Curie
Paris, France
Zeynep.Pehlivan@lip6.fr

pages. In order to maintain the archive up-to-date, crawler
must revisit periodically the pages and update the archive
with fresh images. However, the crawler can not revisit a site
and download a new version of a page all the time because
it usually has limited resources (such as bandwidth, space
storage, etc.) with respect to the huge amount of pages to
archive. In fact, it is impossible to maintain a complete
archive of the whole Web, or even a part of it, containing
all the versions of all the pages. Thus, the problem can be
stated as follows: how to optimize the crawling in order to
download the “most important versions”, so that the mini-
mum of useful information is lost? Of course, this problem
must be solved without any help from web sites managers.
Thus, the archiving system must estimate the behavior of a
site in order to guess when or with which frequency it must
be visited.

Several works [13, 12, 27] have focused on estimating the
change frequency to improve the Web crawlers. However,
the crawler may waste time and space to download a new
page version with unimportant changes such as advertise-
ments which are continually updated. Thus, an effective
method is required to know accurately when and how often
important changes between versions occur. Up to now, ap-
proaches that estimate the frequency of changes only take
into account the amount of detected changes. But, they
do not consider the importance of changes that have oc-
curred. If we can predict important changes frequencies
much more accurately, we may improve the effectiveness of
the web archive system. Therefore, the crawler can improve
the freshness of the local snapshot without consuming as
much bandwidth. It also avoids indexing unimportant infor-
mation and wasting space storage. The counterpart is that
processing page versions to detect changes does not come
for free and we must take care of its complexity so that it
does not become the bottleneck of the system.

In order to estimate the frequency of updates, changes be-
tween already retrieved versions of documents must be de-
tected. Many existing algorithms [21, 15, 29] have been spe-
cially designed to detect changes between semi-structured
documents (XML and HTML). However, there is no method
that detects and distinguishes relevant/irrelevant changes
from useful/useless (noisy) information.

Our work! proposes an approach for detecting important
changes between versions in order to efficiently archive the
web. It will be applied on a repository for the French Na-

!This research was supported by the French National Re-
search Agency ANR in the CARTEC Project (ANR-07-
MDCO-016).

tional Audiovisual Institute (INA). One of the missions of
INA is to create a legal deposit which preserves French ra-
dios and televisions web pages and related pages. A strong
requirement for this project is that the visual aspect of the
pages must be preserved. Thus our idea is to use a visual
page analysis to assign importance to web pages parts, ac-
cording to their relative location. In other words, page ver-
sions are restructured according to their visual representa-
tion. Detecting changes on such restructured page versions
gives relevant information for understanding the dynamics
of the web sites.

Previous works [8, 17] show that a page can be partitioned
into multiple segments or blocks and, often, the blocks in a
page have a different importance. In fact, different regions
inside a web page have different importance weights accord-
ing to their location, area size, content, etc. Typically, the
most important information is on the center of a page, ad-
vertisement is on the header or on the left side and copyright
is on the footer. Once the page is segmented, then a rela-
tive importance must be assigned to each block. This can
be achieved automatically using for instance the algorithm
of [28], or though a supervised machine learning method.
Then, we can compute the importance of changes between
two page versions, based on (1) the relative importance of
blocks and (2) the relative importance of operations (insert,
delete, update, etc.) occurred in those blocks, detected by
comparing the two versions.

The concepts of visual page analysis and importance of
web pages parts are not new. However, as far as we know,
they had never been combined for archiving the web. Our
focus, in this paper, is on detecting important web pages
changes and optimizing the use of allocated resources. Our
main contributions can be summarized as follows:

e A novel web archiving approach that combines three
concepts: visual page analysis (or segmentation), vi-
sual change detection and importance of web page’s
blocks.

e An extension of an existing visual segmentation model
to describe the whole visual aspect of the web page.

e An adequate change detection algorithm that com-
putes changes between visual layout structures of web
pages with a reasonable complexity in time.

e A method to evaluate the importance of changes oc-
curred between consecutive versions of documents.

e An implementation of our approach and some experi-
ments to demonstrate its feasibility.

This paper is structured as follows. In Section 2, related
works are discussed. Section 3 presents the architecture of
the web archive system and some useful concepts. Section 4
describes the extended visual page segmentation model for
HTML web pages. In Section 5, we propose an adequate
change detection algorithm to compute differences between
two visually restructured page versions. Section 6 describes
the method for evaluating the importance of blocks/changes.

Section 7 presents the implementation and discusses exper-
imental results. Section 8 concludes.

2. RELATED WORK

As mentioned in the introduction, our work is related to
web archiving, visual web page analysis and change detec-
tion. We present below related works in those three areas.

Web Archiving. There are several projects launched
by different archiving institutes (national libraries, histori-
cal data archives, etc.) around the world to preserve their
country’s web heritage. These institutes intend to provide
future generation with relevant past (versions of) web pages.
Most of the web archiving initiatives are described at [3].
Archiving is made either manually (Australia [2], Canada
[24]) or by an automatic process based on crawlers (Nordic
countries [6], the Internet Archive [1], French National Li-
braries [4]). Some studies [4, 7] focus on the selection of web
pages to be archived by defining the web perimeter. Others
[13, 12, 27] work on modeling and evaluating the frequency
of web changes. They propose change frequencies estimators
and various refresh policies to improve the archive freshness.
Some researchers [9, 18] address issues concerning the for-
mat of information to be stored and indexed by proposing
their own storage system. Others studies [4, 5] focus on the
control and the representation of changes. They propose
a change detection algorithm and/or a delta format for an
efficient query and storage of the web archive.

Though interesting, those approaches do not take the vi-
sual aspect and the relative importance of pages parts, which
are at the core of our approach.

Visual Web Page Analysis. Several methods have
been proposed to analyze the visual representation of web
pages. The visual aspect of the document gives a good idea
of the semantic structure used in the document and the re-
lations among them. Most approaches discover the logical
structure of a page by either analyzing the rendered doc-
ument or analyzing the document code. Yang and Zhang
[30] describe an approach to extract and analyze the seman-
tic structure of HTML documents derived directly from the
page layout. Their approach tries to detect visual similari-
ties between HTML content objects. Gu et al. [19] propose a
top down algorithm based on the layout information. They
detect the web content structure by dividing and merging
blocks. Kovacevic et al. [17] build up a M-tree that rep-
resents the structure of the page. Then, based on visual
information of each M-tree’s node, they define heuristics to
recognize common page areas (header, left and right menus,
footer and center of the page). Cai et al. [8] propose a
top down, tag tree independent approach that extracts the
web content structure based on visual information given by
the web browser. Their VIPS algorithm segments the web
page into multiple semantic blocks based on visual informa-
tion retrieved from browser’s rendering. Cosulshi et al. [16]
propose an approach that calculates the block correspon-
dence between web pages by using positional information
of DOM tree’s elements. In our project, we are interested
by archiving the visual aspect of radio and television web
pages. Therefore, we intend to detect changes between ver-
sions based on the visual representation of web pages. In
this context, the VIPS method described above seems to be
the most appropriate because it allows an adequate granu-
larity of the page partitioning. It extracts suitable blocks
from the HTML DOM tree, based on visual information

retrieved from browser’s rendering. Compared to existing
methods, VIPS builds a hierarchy of semantic blocks of the
page that better simulates how a user understands the web
layout structure based on his visual perception. We extend
the VIPS model to generate, as output, a Vi-XML document
describing the whole visual structure of the web page. This
Vi-XML document is used for detecting changes. The choice
of using XML as language is motivated by the need to ease
exchanging, comparing, storing and querying the different
versions of archived pages.

Change Detection. Several algorithms have been de-
signed to detect changes between two (versions of) docu-
ments. Previous works in change detection have dealt with
flat files but our focus here is on hierarchical data such as
XML documents. The hierarchical change detection prob-
lem is defined as tree-edit-distance. It consists in finding a
minimum set of change operations (insert, delete, ...) that
transform one data tree to another. These changes opera-
tions are often gathered in a delta script or a delta file.

Various algorithms have been proposed for finding changes
between XML documents. These algorithms have differ-
ent complexities, memory usages and delta formats. The
complexity mainly depends on the data manipulation oper-
ations that the algorithm is able to detect. Some algorithms
are fast but they do not produce an optimal delta script
and/or do not detect move operation (instead, they detect
a delete/insert couple which is semantically poorer). Oth-
ers handle a move or a copy in addition to basic operations
that can impact positively in the delta size. However, this
can increase the complexity time of algorithms. The design
of those diff algorithms depends on the purposes and the
requirements (time complexity, operations to be handled,
quality of the delta, etc.).

Chawathe proposes an algorithm LaDiff [11] which sup-
ports move operation for ordered tree in addition to basic
operations (insert, delete and update). It achieves at time
complexity of O(n * e + €?) where n is the total number of
leaf nodes and e is the weighted edit distance between two
trees. Chawathe also proposes MH-Diff [10] for unordered
trees with move and copy operations, with a time complex-
ity of O(n? xlog(n)). Cobéna et al. [15] propose the Xy-
Diff algorithm to improve time and memory management.
XyDiff also supports move operation and achieves a time
complexity of O(n x log(n)). Despite its high performance,
it does not always guarantee an optimal result (i.e. mini-
mal edit script). Wang et al. [29] propose X-Diff which can
detect the optimal differences between two unordered XML
trees in quadratic time O(n?) but it does not handle a move.
DeltaXML [21] proposed by Robin La Fontaine is the mar-
ket leader. It can compare, merge and synchronize XML
documents for ordered and unordered trees by supporting
basic operations but it does not detect a move. Although
it runs extremely fast and its results are close to minimum,
it is limited in the size of the trees it can handle (maxi-
mum tree size is 50 MB). There are several other algorithms
like Fast XML DIFF [23], DTD-Diff [22], etc. Luuk Peters
[26] and Grégory Cobéna [14] present a survey of some al-
gorithms and provide a comparison between them. In our
project, we aim to detect changes between two versions of
pages, i.e. between two Vi-XML documents. After study-
ing these algorithms, we decide to not use existing change
detection methods for our novel web archiving approach be-
cause they are generic-purpose. As we have various specific

requirements related to the visual layout structure of docu-
ments, we prefer proposing an ad’hoc algorithm that will be
more adequate to the visual aspect of the page. The out-
put delta of our new algorithm is formatted according to the
specific block structure of documents. Moreover, it allows
for a better trade-off between complexity and completeness
of the detected operations set.

3. SYSTEM MODEL

In this section, an overview of the web archive architecture
is given. Then some concepts that will be used through this
paper are defined.

3.1 Web Archive Architecture

Our system consists of four major components: the web
crawlers, the freshness component, the storage component
and the query engine. Figure 1 presents an overview of the
system.

The Web Crawler. The web crawlers harvest the web by

FRESHNESS MANAGER

(ESTIMATOR) Frequency Crawler

OR OR TWEE
I I

STORAGE DOCUMENT
INTERFACE [~ ANALYZER

CRAWLER

QUERY ENGINE <——
User

Storage Component

Figure 1: An Overview of the Web Archive.

iteratively downloading documents referenced by URLs. We
consider two types of web crawlers. The first one downloads
automatically web pages according to a certain frequency
given by an estimator. The second one is an event-driven
crawler. It downloads the most urgent document to be re-
freshed, as computed by a scheduler.
The Freshness Component. The freshness component
allows maintaining the archive up-to-date. It consists of
three main modules: The freshness manager enables the
optimization of allocated resources, so that less information
is lost. It consists of either a change frequency estimator or
a scheduler. The estimator computes the best change fre-
quency for the first type of crawlers. The scheduler chooses
the most urgent page to be downloaded by the event driven
crawler in order to maintain the archive as up-to-date as
possible. It manages a list of documents ordered by a fresh-
ness urgency function. This function estimates, for each
page, how it is urgent to refresh it at a given date. Both
estimator and scheduler depend on the changes already de-
tected and quantified by the document analyzer on previ-
ously archived versions. They take also into account the
estimation of changes importance occurred between succes-
sive downloaded versions. Based on the freshness urgency
function, the scheduler can organize and order the list of
pages to be urgently refreshed.

The Document Analyzer builds the visual page layout
structure. Then, it detects changes and quantifies their im-

portance in order to estimate either the frequency of web
crawlers or the freshness urgency function. This module is
described in more details in the next paragraph. Then, page
versions are stored in a database through the storage inter-
face with additional information such as URL, date/time
of crawl, etc. Changes are also stored to enable querying
the archive with predicates about updates occurred between
versions. The storage interface interacts with the storage
component to store/index page versions and their metadata
obtained during the analysis.

The Storage Component. The storage component con-
sists of data and metadata storage units. It includes also an
index that facilitates querying the archive.

The Query Engine. Users can navigate temporally be-
tween versions and request archived page versions through
the query engine.

The document analyzer. We give here more details on
the document analyzer since it is the core of our approach.
It consists of several sub-modules corresponding to the var-
ious phases of the page analysis. It is depicted in Figure
2. As mentioned in Section 2, we choose to analyze changes
between versions based on the visual representation of web
pages. The visual web pages analysis enables to obtain a bet-
ter partition of a web page at semantic level that can help
to better evaluate of the importance of detected changes.
In other words, comparing two pages based on their visual
representation is semantically more informative than with
their HTML representation.

Evolution

I

Importance
Changes
Analyzer

J

Page
Segmentation

Figure 2: The Document Analyzer.

The document analyzer interacts with the crawler to get
the current version of the HTML page to be archived. Then,
the page is treated by a rendering engine in order to retrieve
visual information. The main advantage of rendering is pro-
viding a real and a complete visual description of the doc-
ument even if embedded scripts, such as JavaScript, are in-
cluded. This is important since scripts can affect the behav-
ior and the structure of the page. After that, the rendered
page is partitioned and the visual page layout structure is
built by analyzing the rendered page. As mentioned in Sec-
tion 2, the VIPS algorithm is used to segment a web page
into semantic hierarchical blocks. We extended it to extract
the links, images and texts for each block. The extended
VIPS algorithm generates, as output, a Vi-XML document
that describes the hierarchical content structure of the page.
At the end of the segmentation process, a change detection
algorithm (Vi-DIFF) provides a description of changes that
occurred between the new generated Vi-XML version V(n)
and the last version archived V(n — 1). Changes are gath-
ered in a delta XML file, called Vi-Delta, that describes the

Changes | CRAWLER |

operations (insertion, deletion, etc.) occurred between two
documents. Thereafter, the Vi-Delta file is analyzed by the
submodule Importance Changes Analyzer to evaluate the
importance of detected changes. The result of this change
evaluation can be used by the sub module Changes Evolution
either to improve the estimation of the crawler frequency or
to compute the freshness urgency function used by sched-
uler. At the end, the Vi-Delta, the current Vi-XML version
and additional metadata are stored in the database through
the storage interface. Further study is necessary to work on
the best storage strategies to be chosen.

3.2 Concepts

In order to better understand the next Sections, we de-
fine/discuss the different data formats we manipulate.
HTML The extreme simplicity of HTML has played an im-
portant role to make it popular and widely used in the web.
Several languages can be used to produce HTML pages like
PhP, Sun JSP, and Microsoft ASP. It can include embedded
scripting language code (such as JavaScript) that can affect
the behavior of web browsers. In our project, we are inter-
ested by archiving HTML web pages even if they can have
eventual complex structures (JavaScript, etc.), which means
that we must work on the rendered pages, not only on the
HTML code. We are currently working on optimizing the
rendering process, but this issue is beyond the scope of this
paper.

Vi-XML is an XML document that describes the tree struc-
ture of the visual aspect of web page version. As men-
tioned before, this document is produced by our extended
VIPS which constructs the hierarchical semantic blocks of
the page. The root of Vi-XML tree is the document and
has as descendants multiple (nested) blocks which represent
the page’s regions. Each leaf block has additional children
nodes like links, images and text. The choice of using XML
is motivated by the need to easily exchange, store and query
the different page versions. It enables representing the vi-
sual aspect of a page version at a semantic level.

Vi-Delta is an XML document describing the sequence of
change operations (insert, delete, etc.) needed to transform
one Vi-XML page version to the next one. It is produced
by our change detection algorithm Vi-DIFF, described in
Section 5. Vi-Delta has a specific format related the visual
block structure of the web page. It is composed of several
elements, each node storing detected change operations of a
given type : (i) element nodes (links, images, or text) deleted
from a block, (ii) element nodes inserted into a block, (iii)
updated element nodes, (iv) nodes moved from one block to
another. Stored changes are first organized and grouped by
block then by operations type. As for Vi-XML documents,
we choose XML as language to represent Vi-Delta because
we want to query changes detected between two versions
of document. Existing query language for XML such as
XQuery can then be used.

4. VISUAL PAGE SEGMENTATION

As mentioned before, VIPS [8] is used to segment a web
page into nested semantic blocks based on suitable nodes in
the HTML DOM tree of the page. It detects the horizon-
tal and vertical separators in a web page. Based on those
separators, it builds the semantic tree of the web page par-
titioned into multiple blocks. The root is the whole page.
Each block is represented as a node in the tree as shown

in Figure 3. To complete the semantic tree of the whole

Bl

B21| B2z

B3

<xmlz
<Page w=".. " version="." .»
<Block ref='81" =" 'pos=". " 5|
<Links id=">»
<link name="." adr="." /»
<link name="" adi="." f»
< Links>
<Images id="" »
<imyy name=".." sre="."

J ofmages>

4 <Tewtsid="." text="" />

. = Link? ol \ «/Block»
,Nme:‘Lmkl’N:n: L2 gm;mf 18l Ky =gy Y <Block ref'B2' id="." . »

ke . o= ... U=t ¢
</Block>
--- <Page>
uml>

~ ViXML Document

Figure 3: The Extended VIPS Algorithm.

page, we extended the VIPS algorithm by extracting links,
images and text for each block. As illustrated in Figure
3, each block node has additional children nodes: Links,
Images and Texts that gather respectively all hyperlinks,
pictures and text contained in the block. All nodes of the
page are uniquely identified by an ID attribute. This ID is a
hash value computed using the node’s content and its chil-
dren nodes content: if matched nodes (nodes at the same
position in two successive versions) have different ID values,
then their content has been necessarily updated. Leaf nodes
have other attributes such as the name and the address for
the hyperlink. Our extended VIPS algorithm generates, as
output, a Vi-XML document that describes the complete hi-
erarchical structure of the web page. The structure of such
a document is shown in Figure 3.

5. CHANGESDETECTION

In this section, we present our changes detection algorithm
called Vi-DIFF. It computes differences between two ver-
sions of a Vi-XML document and produces a Vi-Delta doc-
ument that represents the delta between the two versions.
Vi-XML and Vi-Delta documents are structured as previ-
ously described. In this paper, we do not deal with changes
in the blocks structure : we assume that, from one version of
the document to another, only the content of blocks is mod-
ified. This is the case, for instance, for the most radio and
television web sites. We are currently studying other cases,
where the structure may change between versions, but they
are not considered in the following.

As presented in Section 2, different change detection al-
gorithms for XML document have been proposed. They
are generic algorithms for any document, thus they do not
completely satisfy our requirements. We would like to add
some specific criteria for comparing attributes nodes. For in-
stance, we would like detecting updated links, if its attribute
Address is modified. We want also to detect an update text

in two matched blocks based on a textual similarity /distance
score (e.g. number of shared words): if the score is higher
than 0.5, texts are considered as updated. With generic al-
gorithms, these nodes would be considered as deleted from
the old version and added to the new one. Another speci-
ficity of our approach is that we need to detect changed
elements inside a block and moved elements from one block
to another, but detecting moved element inside a same block
is useless because no information has been added or deleted
in the block. To sum up, we want that the Vi-Delta created
by the Vi-DIFF simulates how a user understand changes
in a web layout structure based on his visual perception. It
includes insert, delete, update and inter-block move opera-
tions, which are detailed in the next section.

5.1 Change Operations

Given two versions of a Vi-XML document, a delta is com-
posed of elementary operations that convert one version of
document into another. z denotes a link, an image or a text
node, attr and attr’ are attributes of z, b and b’ are two
block nodes. The change operations are defined as follows:

e Insert(x(attr),b): inserts a node = with attributes attr
in the block b. We do not deal with the position where
z is inserted in b.

e Delete(x(attr),b): deletes a node z from the block b.

e Update(x(attr),x(attr’),b): changes the attributes value
attr of a node z in the block b to a new value attr’.

e Move(x(attr),b,b’): moves a node z from block b to
block b°.

Example 1.

Old version Xml V({n-1)

New version xml Vi{n)

Figure 4: Change Detection Example.

Given the two Vi-XML trees T1 and T2 shown in Figure
4, the operations that transform T'1 into T2 are given by the
following sequence:

1. insert(link('Link2'),B1),

2. delete(img('Imgl’),B1),

3. update(texts('TextA'), texts('TextB'), B3),
4. move(link('Link21"),B2,B3).

The Vi-Delta describing changes from T1 to T2 is repre-
sented in Figure 5. Detected changes are organized in the
delta by block and by operations type.

<XML>
<Delta from='V(n-1)’ To="V(n)’ >
<Block ref="B1’ ...>
<Insert>
<link name="Link2’ adr="..." />
</Insert>
<Delete>

</Delete>
</Block>
<Block ref="B3’ ...>
<Update>
<Texts oldText="TextA’ newtext="TextB’/>
</Update>
</Block>
<Move>
<link name='Link21’ adr=".." fromBlock="B2’ toBlock="B3’/>
</Move>
</Delta>
</XML>

Figure 5: Vi-Delta Example.

5.2 TheVi-DIFF Algorithm

In this section, we present our Vi-DIFF algorithm that
computes the differences between two Vi-XML documents

and constructs a Vi-Delta to represent changes between them.

In its current version, our algorithm starts with parsing two
Vi-XML documents into trees. We do not consider it as a
step in this paper, because the visual segmentation and the
Vi-DIFF phases will be integrated together. Thus, we as-
sume that the two Vi-XML trees are already available. Also,
we do not take into account change in the visual structure.
We assume that the structure does not change. The de-
tection of changes in the structure will be treated in future
works. A global overview of the Vi-DIFF algorithm is shown
in Figure 6.

The steps of our Vi-DIFF algorithm can be summarized
as follows:
Step 1: Initialization. Assuming the structure of blocks
is fixed lets us traverse two trees (T1, T2) at the same time.
T1 represents the last downloaded version of a page, T2
the one downloaded just before. First, we get all blocks in
two lists (one for T1, another for T2) and then in one loop
we compare block’s IDs. As we mentioned in section 4, each
block has an attribute ID whose value is the hash value com-
puted using the node’s content. If two blocks have the same
ID, they are considered as equal in both versions. If not,
the ID of each block child’s (Links, Imgs, Txts) are pairwise
compared. If they are changed, we add them in different
arrays for each tree and each element. At the end of this
step, we have two arrays for each changed element (Links,
Imgs, Txts) and one empty tree for the delta. Each time we
detect a change in the next step, we create a node and add
it to this delta tree.
Step 2: Detecting changes. In this step, the arrays gen-
erated in step 1 are compared. As links and images have
nearly the same structure, they can be represented in the
same object. For texts, we need to find text similarity, thus
they are treated differently.
o Links and Images:
Before starting to compare, we merge-sort each array ac-
cording to the Name attribute. We define two counters (one

Input: Vi-XML Treel, Vi-XML Tree2
Output: Vi-Delta

1. Traverse Treel, get list of blocks Bl
2. Traverse Tree2, get list of blocks B2

3. Create Delta Tree DT

4. For all block(i) in B1 do

5. if (B1[i].ID != B2[i].ID) then

6. Compare their Links/Img ID

7. if Ids are different then

8. Create object from node(ID,Name,Src,Ref)
9. add objects of Treel in lists Link1/Imgl

10. add objects of Tree2 in lists Link2/Img2

11. end if

12. end if

13. DetectChanges (Linkl, Link2, DT)

14. DetectChanges (Imgl, Img2, DT)

15. DetectTextChanges (Txtsl, Texts2, DT) /* find the operation
by computing the distance between two texts and add it to DT */
16. Save DT

procedure DetectChanges (Listl, List2: List, DT: Delta Tree)
1. Sort both arrays with merge sort (Name attribute)

2. Define two counter variables (for each array).

3. Start to advance both counters on both arrays in an endless loop.
4 if IDs are equal then

5 if if Refs are different then

6. add node for MOVE in DT

7. advance both counters

8 end if

9. else if Names are equal but Adr/Src are different then
10. add node for UPDATE in DT

11. advance both counters

12. else if Listl.Name < List2.Name (alphabetically) then
13. If not the end of Listl then

14. add List1’s obj for DELETE in DT
15. advance List1l’s counter

16. else the element of List2

17. add List2’s obj for INSERTED in DT
18. advance List2’s counter

19. end if

20. else

21. if not the end of List2 then

22. add List2’s obj for INSERT in DT
23. advance List2’s counter

24. else the element of Listl

25. add Listl’s obj for DELETE in DT
26. advance List1’s counter

27. end if

28. end if

29. If the end of one array then

30. advance the counter of other one.
31. end if

32. Break at the end of two arrays
endproc

Figure 6: Vi-DIFF Algorithm.

for each array) and increment them in an endless loop. If ID
values referenced by counters in both arrays are the same,
their Ref (reference to the parent block) values are com-
pared to get moved nodes: if the Ref values are different,
it means that the mentioned node is moved from one block
to another, else they are the same. Both counters are in-
cremented. If they have different IDs, the nodes with the
same Name but with the different Adr/Src. Both counters
are incremented. If they are completely different, element
of the first array (Al of the first document) has a smaller
value (Name attribute value ordered alphabetically), it is
considered as deleted. We advance the counter of the first
array. If it has a bigger value, element of the second array
(A2 of the second document) is considered as inserted. Only
the counter of the second array is incremented. If we reach
at the end of the first array, we continue incrementing the
second counter and we consider all the elements in second
array as inserted. If the second array is reached to end, the

first array’s counter is incremented and all its elements are
considered as deleted.

o For Texts:

We need to find the distance between two texts to decide if
it is an update operation or a delete+insert operation. The
number of different words between two texts are divided by
the length of the first text. If this value is more than 0.5,
the texts are considered as different texts and we have two
operations delete then insert. Otherwise, the text is consid-
ered as updated.

Step 3: Save Delta Tree as XML. In this step, the
delta tree, created in the first step and filled during the sec-
ond step is saved as an XML file.

Complexity

We now briefly analyze the complexity of our algorithm. As
explained in the introduction of this paper, this issue is im-
portant because we do not want that page processing become
a bottleneck of our system. We give the complexity of worst
case in which all blocks of a page changed from one version
to another. The Vi-DIFF algorithm has O(nxlog(n)) as time
complexity, where n is the total number of block nodes. The
complexity of the first step is O(n) because we traverse each
Vi-XML tree. For the second step, we use Collections.sort
(in java) which has quite low complexity [25], O(n*log(n)).
We also tried with our own implementation of merge-sort
but the results were a little bit slower. For detecting changes,
it consists more or less of merging two sorted arrays, so the
complexity is O(n). Thus, our Vi-DIFF algorithm is log-
linear and achieves a time complexity of O(nxlog(n)) which
is rather promising. The main benefit we get from devel-
oping an ad’hoc algorithm is generating a specific format of
Vi-Delta at reasonable time. In fact, our Vi-DIFF produces
a Vi-Delta that completely satisfies our requirements related
to the specific visual structure of Vi-XML files, as mentioned
in Section 5. Note that in this version of the algorithm, a
link /image is considered updated (and not inserted/deleted)
if it has the same name but a different address. One could
consider that a link/image is updated if it has the same ad-
dress but a different name which would lead to symmetrical
version of the algorithm, with the same complexity. Finally,
one could consider that a link/image is updated if it has
the same name OR the same address in both version. In
this case the complexity is a little bit higher, but remains
acceptable.

6. CHANGESIMPORTANCE

Based on the Vi-Delta produced by our Vi-DIFF, we now
evaluate the importance of detected changes which is the
task of the sub-module Importance Changes Analyzer (Fig-
ure 2). We aim to provide a function that enables to dis-
tinguish unimportant changes from important ones between
two page versions. This function takes as input the Vi-Delta
and computes a normalized value that estimates the impor-
tance of changes. This value depends on three major pa-
rameters:

e Block Importance. The page is segmented into mul-
tiple blocks which do not have the same importance. This
importance varies according to the location, area size and
content of the block. Typically, the most important infor-
mation is on the center and the advertisements are on the
header, etc. Song and al. [28] propose to assign automati-
cally importance values for different blocks in the web page.

Based on extracted spatial and content features, they use su-
pervised machine learning algorithms to assign importance
to different blocks. We can, also, take into account other
parameters to evaluate the importance of a block with re-
spect to the history of changes on this block. For instance,
we can consider that the more frequent a block is changing,
the less important it is. Further study is necessary to find
the best technique to estimate the importance of blocks.
e Operations Importance. The importance of operations
depends on the operation type (move, insert, etc.) and the
changed element (link, image, etc.). For instance, insert or
delete operations can be considered more important than a
move. Also, inserting an image can be more important than
inserting a link or a text. Again, we plan to study machine
learning methods to choose the best parameters values for
each operation type.
e Changes Amount per Block. The amount of change
operations (delete, insert, etc.) occurred inside a block for
each element (link, image and text) is deduced from the gen-
erated Vi-Delta. This amount represents the percentage of
change operations detected for each block divided by the
total number of block’s elements.

Based on these parameters, we propose the following func-
tion E(vi,v2) to estimates the importance of changes be-
tween versions v; and wve, each composed of blocks Bk; :

Npk Nop N
_ | 1 % NOp;, Bl
B 3Bk I Y 1O S g

Jj=1

where:

- Op;={insert, delete, update, move}

- Eli={link, image, text}

- Ng; is the number of elements type in the block.

- Noyp is the number of operation type in the block.

- Npj is the number of block in the page.

- I(z) denotes the importance value of x which can be a
block or a change operation. In order to normalize the re-
sult of function E(), we add the following constraint on the
importance of blocks : >Nk [(Bk;) = 1;0 < I(Op) < 1

- N(Opj, Eli;) denotes the number of change operation j
that occurred on the element k.

- N(El, Bk;) denotes the total number of elements k inside
the block 3.

The function E() is computed by multiplying the percent-
age of changes, for each operation (Op;) and block Bk;, by
the importance of operations I(Op;) and blocks I(Bk;). It
returns a normalized value between 0 and 1.

Example 1.

Given the blocks importance as shown in Figure 7, the
change operations detected in a delta are: (i) an update
of a text in block Bi; (ii) an insertion of 4 links in block
Bs.2; (iii) a deletion of 2 images in block Bs. In this pa-
per, as mentioned in Section 5, we do not deal with changes
in the block structure. Only the content of block is modi-
fied from one version to another. In this example, the op-
erations insert and update are considered more important
(I(ins) = I(upd) = 1) than a delete (I(del) = 0.8). In the
old version of the page, the block B; has one text element,
B2 has 2 links and B3 has 4 images. The importance of
changes is computed as follows:

E = I(bk1) * I(upd) * [N (upd, text) /N (text,bk1)] + I (bka.2) *

B1 (0.1) 4+—— 1 updated text

B21| B2 4 mzerted links
03| 04

B3 (0.2) |l deleted images

Figure 7: Block Importance Example.

I(ins) * [N (ins, link) /N (link, bkz)] + I(bks) * I(del)
x [N (del,image) /N (image, bks)] = 0.1 * 1 * (1/1) + 0.4 * 1
£ (4/(244)) + 0.2 % 0.8 * (2 /4) = 0.44

This function E() can be used by the scheduler to choose
the most urgent document to be refreshed according to the
history of changes. As mentioned in Section 3.1, the sched-
uler manages a list of documents ordered by a freshness ur-
gency function. This function takes into account the impor-
tance of changes (estimated by function E()) that have oc-
curred between the original version and the last one archived.
We are currently working to define a best freshness urgency
function for the scheduler that uses E() as estimator of
changes importance. We expect that this function improves
the event-driven crawler by retrieving the most urgent doc-
ument from the web. In further work, we hope also to use
this function to compute the best frequency for the first type
of crawler (the frequency crawler). Also, others parameters
can be used to evaluate the importance of changes such as
the page rank, the depth where a page is in a site (e.g.,
deeper a page is, the less important it is), etc.

7. IMPLEMENTATION AND VALIDATION

To evaluate the feasibility of our approach and to ana-
lyze its performance, experimental studies were performed.
We first present the evaluation of our visual segmentation
methods over HTML pages from the web. Then, results
obtained by running our Vi-DIFF algorithm over various
Vi-XML documents are analyzed.

7.1 Visual Segmentation

Visual segmentation experiments have been conducted over
HTML web pages by using the extended VIPS method. We
measured the time spent by the extended VIPS to segment
the page and to generate the Vi-XML document. We present
here results obtained over various HTML documents sized
from about 20 KB up to 600 KB. These represent only sizes
of container objects (CO) of web pages. A container object
(CO) is usually a HTML file that references external objects
(EO) like images, video, etc. According to Andrew King’s
research [20], the average size of web pages was about 312
KB (50 % of it is the size of CO) in 2008. Thus, the CO’s
size of the average web page is about 156 KB that we can
use as reference to analyze our results.

We measured the performance of the visual segmentation
in terms of execution time and output size. The implemen-
tation of the visual segmentation was written in the C++
programming language by extending the dynamically linked
library VIPS.DLL [8]. Experiments were conducted on a PC
running Microsoft Windows Server 2003 over a 3.19 GHz In-
tel Pentium 4 processor with 6.0 GB of RAM.

The execution time for the browser rendering and the vi-

Visual Segmentation Time Cost

0,9
0,3
07
0,8
05 W Rendaring

@ Segmentation
0,4

0,3

0.1 -
BABHHBHEAE

20 32 B2 G4 72 100108120 162 180 256 303 324 530
HTML Document Size (KB)

Time cost (Sec)

Figure 8: Segmentation Time

sual segmentation is shown in Figure 8. The horizontal axis
represents the size of HTML documents in KBytes (KB),
and the vertical axis shows the execution time in seconds
for each document. The time for rendering is almost con-
stant, about 0.1 seconds. The execution time of the visual
segmentation increases according to the size of HTML doc-
uments. The average time of the segmentation is about 0.2
seconds for documents sized about 150KB. This execution
time seems to be a little bit costly but is counterbalanced
by the richness of the Vi-XML file that really simulates the
visual aspect of web pages. Nevertheless, this time cost
must be optimized. The main idea for that purpose is to
avoid rebuilding the blocks structure for a page version if
no structural change has occurred since the former version.
We are currently trying to find a method that detects di-
rectly changes inside blocks based on the visual structure of
previous versions of the document.

HTML To Vi-XML Size

mVi-{ML Size
a0

Vi-XML Size (KB)

20 32 62 64 72 100102 120 162 120 296 208 224 580
HTML Document Size (KB)

Figure 9: HTML TO Vi-XML

Figure 9 presents the size of the output Vi-XML file with
respect to the size of the original HTML document. From
this experiment, we can observe that the Vi-XML document
size is usually about 30 to 50 percent less than the size of
the original HTML document (for those sized more than
100 KB). This is interesting for the comparison of two Vi-
XML documents since it can help to reduce the time cost
of changes detection algorithm. In the next section, we use
the generated Vi-XML documents corresponding to Figure
9 to experiment our Vi-DIFF algorithm.

7.2 Vi-DIFF

Experiments were conducted to analyze the performance
of our proposed Vi-DIFF algorithm in terms of execution
time and delta size. The implementation is written in Java
programming language. Tests were conducted on PC run-
ning Linux over a 3.20 GHz Intel Pentium 4 processor with
1.0 GB of RAM. To better analyze the performance of our
Vi-DIFF, we build a simulator that generates synthesized
changes on given Vi-XML documents. The simulator takes
a Vi-XML file and it generates a new version according to
the parameters given as input (proportion of leaf blocks
changed, for each operation type). It also generates the cor-
responding delta file that helps checking if the result of the
Vi-DIFF is correct. We have tested our algorithm with the
same Vi-XML documents as in Figure 9. 10 % of changes are
fixed for each operation type (insert, delete, update, move)
for links and images. For texts, only an update operation is
considered. We have analyzed precisely each different time

002s

Step 3
O Step 2- 2 (Tex)

o0s =

001 - ——— = — —

Execution Timeisec)

mStep 1

W Step 2 - 1(Links,Imgs)

A TTTET,

46 47 48 67 96 104 106 128 167 170 237 282 320
Size total of 2 Vi-XML files(Kh)

Figure 10: Vi-DIFF Execution Time

spent in main functions: Initialization (Stepl), change de-
tection for links and images (Step 2-1), change detection for
texts (Step 2-2) and save of delta file (Step 3). As shown
in Figure 10, change detection for links and images is the
fastest part of the whole process. Initialization increases
with the size of files because the more links (image, text)
we have, the more objects we must create. The time of step
2-2 does not depend on files size but the length of texts
in it. The total execution time is satisfying as it allows to
process more than one hundred (currently sized) pages per
seconds and per processor. Others tests have been realized
to measure the size of output delta. Results show that the
size of the delta is always less than the size of one version
of Vi-XML document, which is reasonable. To check the
correctness of the delta, we manually compared the delta
generated by the simulator with the delta produced by our
Vi-DIFF, with success.

8. CONCLUSION AND FUTURE WORKS

In this paper, we pointed out the issue of efficiently archiv-
ing web pages. Web archiving can waste time and space for
indexing and storing unimportant changes on page versions.
In our context (repository for the French INA), the visual
aspect of pages is the most important to preserve. Thus,
our approach is based on the visual representation of pages
to better detect important changes between versions. Other
approaches for Web archiving are based only on the fre-
quency of changes.

The first step of our approach consists of constructing the
whole visual layout structure of document based on seman-

tic blocks. To this end, we extended VIPS [8], an existing
algorithm for page segmentation, by adding features to the
segmented document. Those new features are useful for the
subsequent changes detection phase. This latter consists of
comparing the last version archived of a page and the for-
mer one. The Vi-Diff algorithm we designed for this phase is
more adequate to the visual layout structure of documents
than existing generic methods. Then, issues related with
evaluating the importance of changes were discussed. We
expect this evaluation to be used, in a future step, to better
predict the frequency of crawlers.

Preliminary tests on the segmentation and diff phases
show that the execution time is promising. However, the
time for segmentation is much higher than the time for com-
paring. In order to further optimize the system, we must
focus on reducing the segmentation time. One idea is to as-
sume that the block structure is evolving very rarely. Thus
we can try to parse directly the HTML code, to check if the
structure has changed or not. If not, then the new values
for the blocks attributes can be extracted without segmen-
tation. The idea is to process the segmentation only when a
change in the structure is detected. We are currently inves-
tigating how to detect such a change in the structure by just
parsing the HTML code. Another, yet complementary, idea
is to rewrite the segmentation module from scratch. Indeed,
the actual version is an extension of an existing code, which
moreover uses a browser to get the rendered page. By using
an ad’hoc rendering engine and recoding the whole module,
we hope to reduce the segmentation time drastically.

Another on-going work is the handling of changes in the
block structure. Not only we must detect those changes, but
also extend the Vi-Delta XML structure to store them. Also,
we intend to propose a visualization of the Vi-Delta in order
to help user to better assess the importance of changes.

Future works are related to the urgency function and im-
portance estimation. We are currently looking for the best
machine learning technique to get automatically the rela-
tive importance of blocks and of change operations. The
used technique should take into account the importance of
contents in blocks especially when affected content can have
a high significance according to the context of the page.

9. REFERENCES

[1] Internet Archive Wayback Machine,
http://www.archive.org.

[2] A National Library of Australia Position Paper.
National strategy for provision of access to australian
electronic publications.
www.nla.gov.au/policy /paep.html.

[3] The Web archive bibliography,

http://www.ifs.tuwien.ac.at/ aola/links/webarchiving.html.

[4] S. Abiteboul, G. Cobena, J. Masanes, and G. Sedrati.
A First Experience in Archiving the French Web. In
ECDL ’02: Proceedings of the 6th Furopean
Conference on Research and Advanced Technology for
Digital Libraries, 2002.

[5] H. Artail and K. Fawaz. A fast HTML web page
change detection approach based on hashing and
reducing the number of similarity computations. Data
Knowl. Eng., 66(2):326-337, 2008.

[6] K. P. Arvidson and J. Mannerheim. The kulturarw3
project - the royal Swedish web archiw3e - an example

7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

22]

23]

of complete’ collection of web pages. In 66th IFLA
Council and General Conference, 2000.
www.ifla.org/IV /ifla66 /papers/154-157e.htm.

D. J. C. Lampos, M. Eirinaki and M. Vazirgiannis.
Archiving the greek web. In 4th International Web
Archiving Workshop (IWAW04), Bath, UK, 2004.

D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a
Vision-based Page Segmentation Algorithm. Technical
report, Microsoft Research, 2003.

W. Cathro. Development of a digital services
architecture at the national library of Australia.
EduCause, 2003.

S. S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In SIGMOD ’97:
Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, New York, NY,
USA, 1997.

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In SIGMOD °96: Proceedings
of the 1996 ACM SIGMOD international conference
on Management of data, New York, NY, USA, 1996.
J. Cho and H. Garcia-Molina. The Evolution of the
Web and Implications for an Incremental Crawler. In
VLDB ’00: Proceedings of the 26th International
Conference on Very Large Data Bases, 2000.

J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Trans. Interet Technol., 3(3), 2003.

G. Cobéna, T. Abdessalem, and Y. Hinnach. A
comparative study for XML change detection.
Technical report, 2002.

G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. In ICDE ’02: Proceedings
of 18th International Conference on Data Engineering,
2002.

C. N. Cosulschi M. and G. M. Classification and
comparison of information structures from a web page.
In The Annals of the University of Craiova, 2004.

M. K. Evi, M. Diligenti, M. Gori, M. Maggini, and

V. Milutinovi. Recognition of Common Areas in a
Web Page Using Visual Information: a possible
application in a page classification. In the proceedings
of 2002 IEEE International Conference on Data
Mining ICDM’02, 2002.

D. Gomes, A. L. Santos, and M. J. Silva. Managing
duplicates in a web archive. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing,
2006.

X.-D. Gu, J. Chen, W.-Y. Ma, and G.-L. Chen. Visual
Based Content Understanding towards Web
Adaptation. In Second International Conference on
Adaptive Hypermedia and Adaptive Web-based
Systems (AH2002), 2002.

A. B. King. Website optimization. O’Reilly, 2008.

R. La-Fontaine. A Delta Format for XML: Identifying
Changes in XML Files and Representing the Changes
in XML. In XML FEurope, 2001.

E. Leonardi, T. T. Hoai, S. S. Bhowmick, and

S. Madria. DTD-Diff: A change detection algorithm
for DTDs. Data Knowl. Eng., 61(2), 2007.

T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast

24]
[25]
[26]
27]

(28]

29]

(30]

and simple XML tree differencing by sequence
alignment. In DocEng ’06: Proceedings of the 2006
ACM symposium on Document engineering, 2006.

L. Martin. Networked electronic publications policy,
1999 .www.nlc-bne.ca/9/2/p2-9905-07-f.html.

M. Naftalin and P. Wadler. Generics and Collections
in Java. O’Reilly, 2005.

L. Peters. Change detection in XML trees: a survey.
In 3rd Twente Student Conference on IT, 2005.

S. R. Singh. Estimating the rate of web page updates.
In IJCAI 2007.

R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
block importance models for web pages. In WWW ’04:
Proceedings of the 13th international conference on
World Wide Web, 2004.

Y. Wang, D. DeWitt, and J.-Y. Cai. X-Diff: an
effective change detection algorithm for XML
documents. In ICDE ’03: Proceedings of 19th
International Conference on Data Engineering, March
2003.

Y. Yang and H. Zhang. HTML Page Analysis Based
on Visual Cues. In ICDAR ’01: Proceedings of the
Sizth International Conference on Document Analysis
and Recognition, 2001.

	ECDL2009_Workshop_Notes 208
	ECDL2009_Workshop_Notes 209
	ECDL2009_Workshop_Notes 210
	ECDL2009_Workshop_Notes 211
	ECDL2009_Workshop_Notes 212
	ECDL2009_Workshop_Notes 213
	ECDL2009_Workshop_Notes 214
	ECDL2009_Workshop_Notes 215
	ECDL2009_Workshop_Notes 216
	ECDL2009_Workshop_Notes 217

