“Catch me if you can”:
Visual Analysis of Coherence Defects in Web Archiving

Marc Spaniol, Arturas Mazeika, Dimitar Denev, and Gerhard Weikum
Max-Planck-Institut fir Informatik
Campus E1 4
Saarbrlcken, Germany
{mspaniollamazeika|ddenev|weikum}@mpi-inf.mpg.de

ABSTRACT

The World Wide Web is a continuously evolving network of
contents (e.g. Web pages, images, sound files, etc.) and an
interconnecting link structure. Hence, an archivist may never
be sure if the contents collected so far are still consistent
with those contents she needs to retrieve next. Therefore,
questions arise about detecting, measuring them and — finally
— understanding coherence defects. To this end, visualization
strategies are being presented that might be applied on
different level of granularities: working with (in the ideal case)
properly set last-modified timestamps, based on metadata
extracted from the crawler in accelerated crawl-revisit pairs,
or from the Internet Archive’s WARC files. In order to help
the archivist in understanding the nature of these defects,
this paper investigates means for visualizing change behavior
and archive coherence.

Categories and Subject Descriptors
H.3 Information Storage and Retrievall:
Content Analysis and Indexing

General Terms
Measurement

Keywords
Web Archiving, Data Quality, Coherence Analysis and Visu-
alization

1. INTRODUCTION

“Catch me if you can” is the title of a movie based on a
true story about impostor Frank Abagnale Jr., who plays
being a pilot, doctor, and lawyer. While the movie describes
the difficulties in catching a real-life pretender, this situa-
tion can be somewhat compared with the problems in Web
archiving: The World Wide Web enables millions of users
to publish, change, and delete content on the Web. Like
chasing an impostor, preservation and archival of the digi-
tal born media is not trivial and can contain data quality

IWAW09, September 30 - October 1, 2009, Corfu, Greece.

issues. For example, consider a content-management system
(CMS) maintaining a Web site of a research organization:
whenever, two researchers co-author a publication, the CMS
automatically creates references to the joint publication on
the homepages of the two authors. As the crawl may visit
one of these homepages before such an update and the other
homepage after the update, the archive may end up with
inconsistent page crawls. Hence, an archivist may never
be sure if the contents collected so far are still consistent
with those contents she needs to retrieve next. To make the
matter worse, the crawling of a site should be polite with
substantial pauses in between subsequent HTTP-requests in
order to avoid unduly high load on the site’s HT'TP-server
[12]. As a consequence, capturing a large Web site may span
hours or even days, and changes during this time period and
temporary unavailability are the norm.

“Coherence” is defined by the Oxford English Dictionary® as
“the action or fact of cleaving or sticking together”, or as
a “harmonious connexion of the several parts, so that the
whole 'hangs together'”. Consequently, a coherence defect
exists, if some element violates this condition. In case of
Web archiving coherence has a temporal dimension: contents
are considered to be coherent if they appear to be “as of”
time point z or interval [z;y]. What appears to be a simple
requirement, develops to be complex and almost impossible
to achieve: since publishers cannot provide instantaneous
copy of the whole Web site, are autonomous, and do not
collaborate with each other, limited guarantees can be given
about the quality of the crawls.

Figure 1 depicts coherence defects in a Web archive. In
this case, the coherence defects are caused by references
from a Web page to other pages, which have already been
superseded by more recent versions. In this case, the archived
documents on the left-hand side are incoherent (highlighted
by a red frame) with respect to the entry page (reference
time point “as of” 17/02/2007). However, the link from the
entry page to the page on the right-hand side that has been
archived on 19/02/2007 is coherent (indicated by a green
frame), because both pages are valid and unchanged “as of”
17/02/2007. What is easy to recognize to be incoherent as
a human is more difficult for a machine. A computer might
only be able to a (very) limited degree interpret the temporal
aspect of a page. Nevertheless, given the last modification
dates as reference time points of observation, we are able
to reason about coherence defects between two instances of

"http://dictionary.oed.com

Missing
updates

Reference: time

o ”
as of 13/02/2007 as of 29/01/2007 as of 17/02/2007 as of 19/02/2007

Figure 1: Coherence defects in a Web archive for
www.alemannia-aachen.de “as of” 17/02/2007

a document. To this end, we introduce several techniques
at different levels of granularity to reason about the time
point when contents have been modified and — subsequently
— analyze if coherence defects exist.

Our research on the visual analysis of coherence defects in
Web archiving aims at specifying the degree of change having
occurred either during a site crawl or among a sequence of
crawls of this site. Thus, the fidelity and interpretability of
the crawl becomes quantifiable. Like chasing an impostor,
we may not be able to prevent Web contents from changing
its appearance, but we are able to identify these changes and
to adjust crawling strategies so that future crawl will be as
coherent as possible. To better understand the coherence
defect and changes in the Web archives we suggest to analyze
the data using four different visualization templates: (i)
visualization of changes in the spanning tree of the crawl
with visone, (ii) scatterplot visualizations of content change
analysis, (iii) area plot visualizations of time series, and
(iv) scatterplot visualization of time series of change. The
visualizations allow investigating coherence defects in terms
of both structure and content, get the level of change, and
understand the patterns of change among individual pages in
a sequence of Web archives. UKGOV and MPI dataset were
primarily used in our visual analysis. The UKGOV dataset
consists of 120 weekly crawls of seven governmental sites in
the united kingdom. MPI dataset consists of daily crawls of
the Max Planck Institute for Informatics Web site.

The paper is organized in the following way. We review
related work in Section 2. Section 3 introduces change detec-
tion and the concept of coherence defects. Section 4 discusses
data collection, extraction, and preparation issues for the
analysis of coherence defects. Section 5 presents four visu-
alization templates and visually analyzes coherence defects.
Finally, Section 6 draws conclusions and gives an outlook on
future work.

2. RELATED WORK

The most comprehensive overview on Web archiving is given
by Masanes [12]. This book covers the various aspects in-
volved in the archiving as well as the subsequent accessing
process. The issue of coherence defects is introduced as well,
but only some heuristics how to measure and improve the
archiving crawler’s front line are suggested. In [19] we have
studied the aspect of data quality in Web archiving. Here,
we investigated the concept of temporal coherence in more
detail, but have not investigated the nature of coherence de-
fects in real world data. In another study, we have designed
strategies to minimize the number of changes encountered
for random queries in a predefined observation interval [7].
In both studies, we assume that the changes of the pages
are well understood and structured. In this paper we do not
make any assumptions about the change model. Here, we
aim at visually investigating the changes patterns and the
coherence defects they cause.

Related research that comes closest to the analysis of coher-
ence defects deals, for instance, with the visualization of web
site reconstructions. In this study, McCown et al. evaluate
crawling policies which can be used to reconstruct websites
from different resources (such as the Internet Archive or
search engines) [13, 14]. Their results show which content
types might be recovered best and how to reconstruct a
Web site as best as possible. The authors also analyze the
differences between original and reconstructed Web sites.
However, they do not recommend an automated evaluation
strategy apart from shingling for text-based resources. In a
different direction goes the work of Jatowt et al. [11]. Here,
the authors aim at detecting the age of page content in order
to dynamically reconstruct page histories at userSs request.
Similarly, Nunes et al. strive for dating Web documents by
analyzing their neighbors [17]. Both studies, complement
traditional approaches based on relying on HTTP headers
or content metadata only. However, both approaches do not
analyze the impacts of the measured changes on the overall
site’s coherence and the visual interpretation of those defects.
Other related research mostly focuses on aligning crawlers
towards more efficient and fresher Web indexes. Brewington
and Cybenko [1] analyze changes of Web sites and draw con-
clusions about how often they must be reindexed. The issue
of crawl efficiency is addressed by Cho et al. [5]. They state
that the design of a good crawler is important for many rea-
sons (e.g. ordering and frequency of URLSs to be visited) and
present an algorithm that obtains more relevant pages (ac-
cording to their definition) first. In a subsequent study Cho
and Garcia-Molina describe the development of an effective
incremental crawler [2]. They aim at improving the collec-
tion’s freshness by bringing in new pages in a timelier manner.
Into the same direction head their studies on effective page
refresh policies for Web crawlers [3]. Here, they introduce a
Poisson process based change model of data sources. In an-
other study, they estimated the frequency of change of online
data [4]. For that purpose, they developed several frequency
estimators in order to improve Web crawlers and Web caches.
In a similar direction goes research of Olston and Pandey
[18] who propose a recrawl schedule based on information
longevity in order to achieve good freshness. Ipeirotis et al.
[10] apply survival analysis to investigate the information
longetivity. They devise update schedules based on Cox’s
proportional hazards regression. Tan et al. [20] use sampling

to detect and predict page updates. They identify features
reflecting the link structure, the directory structure and the
Web page content. Their adaptive download strategies are
based on the detected page clusters. Another study about
crawling strategies is presented by Najork and Wiener [16].
They have found out that breadth-first search downloads hot
pages first, but also that the average quality of the pages
decreases over time. Therefore, they suggest performing
strict breadth-first search in order to enhance the likeliness
to retrieve important pages first. Analysis and understanding
of coherence defects is quite different and more difficult. We
visualize the changes and coherence defects appropriately
and aim to identify pages and subgraphs of the Web crawls
that need adjustment in future crawls.

3. CHANGE DETECTION AND COHERENCE

DEFECTS

Coherence is a data quality characteristic. In general settings
this means that a set of data items do not conflict in terms
of predefined constraints. In central database systems the
transaction management subsystem ensures that data quality
constraints are satisfied. In a distributed environment the
individual components must cooperate and use specialized
algorithms to ensure the constraints.

Coherence is a complicated matter in Web archiving. The
content producers (authors) may post information that is
conflicting (a Web page of a soccer match may point to
pictures of a different soccer match), the content providers
(Web sites) have limited ability and desire to cooperate, and
— finally — logics in CMSs are different (pages can be updated
immediately, while others may delay the changes; contents
may be generated dynamically, depending on download time,
location, and Web server load).

In this paper we approach coherence defects from a temporal
perspective. It takes an interval of time to archive the whole
Web site, however if the archive consists of the versions of
pages that can be viewed to be downloaded at one point
in time then we say that the archive is without coherence
defects. Alternatively, if one of the pages changed during
the crawl then there is no guarantee that all the pages can
be viewed as of some time point and we say that there is a
coherence defect. In order to reason about coherence defects
between any two content instances, we employ both the
dating and the content check. The canonical way for time
stamping a Web page is to use its Last-Modified HTTP
header, which is unfortunately unreliable (cf. [6, 11] for
more details). For that reason, another dating technique is
to exploit the content’s semantic timestamps. This might
be a global timestamp (for instance, a date preceded by
“Last modified:” in the footer of a Web page) or a set of
timestamps for individual items in the page, such as news
stories, blog posts, comments, etc. However, the extraction
of semantic timestamps requires the application of heuristics,
which imply a certain level of uncertainty. Finally, the most
costly - but 100% reliable - method is to compare a page
with its previously downloaded version. Due to cost and
efficiency reasons we pursue a potentially multistage change
measurement procedure:

1) Check HTTP timestamp. If it is present and is trust-
worthy, stop here.

2) Check content timestamp. If it is present and is trust-
worthy, stop here.

3) Compare a hash of the page with previously downloaded
hash.

4) Elimination of non-significant differences (ads, fortunes,
request timestamp):

a) only hash text content, or “useful” text content

b) compare distribution of n-grams (shingling)
c) compute edit distance from the previous version

On the basis of these dating technologies we are able to
develop coherence improving capturing strategies that allow
us to reconcile temporal information across multiple crawls
and/or multiple archives.

4. DATA EXTRACTION AND PREPARA-
TION

This section discusses data collection, extraction, and prepa-
ration issues for the analysis of coherence defects and un-
derstanding of change in Web archives. Different visualiza-
tion templates and coherence defect analyzes put different
requirements for the input data. In the simplest case an
analysis may require a single instance of a site’s archived
pages, while more elaborated analysis may investigate the
dynamics of change for a pair or even a sequence of instances
of one or multiple sites including both page (content) and
link (structure) information of the site(s). To cope with
the generality of the inputs we aim to reuse as much of the
general database management technologies as possible and
push as much of data storage, retrieval, and processing to the
standard SQL DBMS level. In this section we give a guidance
how a database schema should look like (Section 4.1), how
to import as well as to clean the data with standard SQL
(Section 4.2).

4.1 Database Schema

Essentially, the database schema consists of the pages re-
lationship (cf. t_pages in Figure 10) and links relations (cf.
t_links in Figure 10). The pages relationship records infor-
mation related to a page in a Web site including its url, size,
status code, and last modified timestamp. In addition, we
encode the url with urlid (cf. t_urls) but record only the
site_id. This allows us to quickly and efficiently retrieve
selections of the pages of specific site_id and crawl_id, check
whether the page has changed in two subsequent crawls, and
perform efficient and effective data cleaning (cf. Section 4.2).
The payload of the page is stored in the content attribute
provided it did change compared to the previous crawl (cf.
vs_page_id, Section 4.3). Essentially, the link information
is recorded in t_links table. The pair attributes from_url_id
to_url.id identify all links from and to a page for a given
crawl. The crawl order of the Web archive can be accessed
through the parent_page_id attribute in the t_pages table.

Two multidimensional b-trees over attributes (crawl id, site_id,
urlid) for t_pages and (crawlid, from_site_id, to_site_id,

from_url_id, to_url_id, visited_timestamp) for t_links, as well

as single attribute b-tree for primary keys exist. This sim-
ple but very efficient organization of data allows very fast

retrieval of selections (for a given crawl and site ids) and

computation of coherence defects (cf. Section 5).

4.2 Data Import from WARC files

Data import from ARC and WARC files primarily consists of
two tasks: loading the data into the database, and reduplicat-
ing and cleaning the data. ARC [8] and its successor WARC
[9] are a de-facto standard in Web archiving. They are used
to record the archived pages themselves and meta data about
them (e.g. URL, length, download time, and the checksum
of the Web page). Unfortunately, neither ARC nor WARC
formats support link information of the Web site. We obtain
this information from the DAT files, conveniently created
by the Heritrix crawler [15] during the archival and URL
extraction process. If ARC and WARC files are available
then the link structure between the pages can be recreated
with the help of the URL extraction module of Heritrix from
the archived HTML pages.

Web archive data need to be cleaned prior to coherence
defect analysis. The most typical problem here are multiple
downloads of the same page/URL. This occurs due to several
reasons: some pages are downloaded many times to reflect
the download policy of the Web site (such as robots.txt),
since some embedded material was not available at the time
of the download, or because pages might be re-downloaded by
the archivist to improve the quality of the coverage/quality of
the site. Even more, pages can be downloaded multiple times
because of the pure formatting of the URLs of the pages:
if the Web server does not distinguish the upper and the
lower case in the URLSs, the designers of the individual pages
tend to use different capitalizations of both the filenames
and the subdirectories. Large parts of the site can be re-
crawled multiple times because of this reason. Removal of
duplicates and cleansing is essential for such data, since
different capitalization influences the number of changed
documents and complicates the analysis of the history of
changes for a given page.

SQL code for the removal of duplicates is given in the Ap-
pendix 2. The algorithm identifies the tuple with the largest
timestamp (cf. Lines 3—4) in all groups of pages with the
same url (cf. Line 6), and filters out all other tuples (cf. Lines
7-10). Once the duplicates from the t_pages relation are
removed, the duplicate links can be removed by removing all
tuples that are not referenced in the cleaned t_pages relation.
For convenience we store the cleaned data in t_pages_dd and
t_links_dd relations (cf. Lines 1 and 12).

Removing duplicates of formatting of the URLs can be done
similarly. All URLs need to be lowercased, grouped by the
same URLs, and the URL with the latest timestamp is taken.
However such an approach involves many and costly string
comparisons. Instead, we establish the grouping on the ids
of the URLs level (cf. Appendix Lines 1-8 in Listing 3), and
compute the smallest values for each group (cf. Lines 10-33).

4.3 Data Harvesting with Heritrix

Data harvesting with Heritrix aims at obtaining the data to
be stored in the database directly from the crawler, instead
of having to do the time-consuming WARC file processing.
Even more, information such as the path to a certain page can
be directly extracted from the crawler, but needs a complex
reconstruction from WARC files. Additionally, we have
developed a crawl-revisit mechanism in order to minimize
the time frame for the coherence analysis.

Do recrawl @

recrawl

Store fetched as
recrawl

[yes]

Load seeds

from previous Store fetched as

Create
recrawl recrawl

Fetch
Content

Fetch HTTP
Headers

recrawl changed

Figure 2: Flowchart of our temporal coherence pro-
cessor in Heritrix

Technically, our temporal coherence module is subdivided
into a modified version of the Heritrix crawler (cf. crawler.
archive.org), its associated relational database (see Section
4.1 for details about the database design) and an analysis
and visualization environment. Into the database, (meta-
)data extracted from the modified Heritrix crawler are stored.
Furthermore, a crawl-recrawl mechanism has been added,
which performs an efficient recrawl strategy. It allows test-
ing for content changes right after the crawl has completed.
To this end, we apply conditional GETs that make use of
the contents’ ETags. As a result, the subsequent validation
phase becomes faster by simultaneously reducing bandwidth
as well as server load. All crawls are then made accessible
as distinct crawl-recrawl pairs. Of course, arbitrary crawls
can be combined as artificial crawl-recrawl pairs of “virtually”
decelerated crawls as well. Figure 2 depicts a flowchart high-
lighting the main aspects of our temporal coherence processor
in Heritrix. Those elements in green contain unchanged el-
ements compared with the standard Heritrix crawler. The
bluish items represent methods of the existing crawler that
have been adapted to our recrawl strategy. Finally, the red
unit represents an additional processing step required for
initializing the instantaneous recrawl.

The analysis and visualization environment of our temporal
coherence module serves as a means to measure the quality
of a single crawl-recrawl pair or any pair of two crawls. For
that purpose, statistical data per crawl (e.g. number of
defects occurred sorted by defect type) is computed from
the associated relational database after crawl completion. In
this post-processing step, the site is analyzed in a (spanning)
tree representation derived from the crawler’s path within
the site.

input : CrawlTree tree
begin
collapseNode (tree.root)
drawNode (tree.root)
end

Algorithm 1: processCrawlTree

Visualizing the spanning tree gives insights about the po-
sition and the nature of the changes in the Web contents
compared with a previous crawl. However, the spanning tree
usually is large in size and infeasible for many visualization
tools. To overcome that problem and to focus on defects, we
compress the tree and visualize only its relevant components
(cf. Algorithm 1).

input : Node node
begin
node.collapsing=true
if hasLinkChange (node) then
node.color=red
node.collapsing=false
else if hasContentChange (node) then
node.color=yellow
node.collapsing=false
else node.color=green
forall children of node do
collapseNode (child)
if child.collapsing=false then node.collapsing=false
else node.collapsingSize=child.collapsingSize+1
end

end

Algorithm 2: collapseNode

In the first step, we analyze the contents of the spanning tree
and “flag” them according to their status: green if they are
unchanged (coherent), yellow in case of textual incoherence
only, red in terms of structural incoherence observed, and,
finally, black whenever a content is missing in the subse-
quent crawl. Afterwards, we apply a collapsing strategy (cf.
Algorithm 2), which tags the nodes in each fully coherent
subtree as collapsible and marks the defect nodes and their
ancestors as non-collapsible. In the visualization step (cf.
Algorithm 3) we draw the non-collapsible nodes colored as
detected. Additionally, for each collapsed subtree we draw a
node proportional in size to the number of the nodes in the
subtree and connect this node to the parent of the subtree.

input : Node node
begin
paintNode (node)
forall children of node do
if child.collapsing=false then
drawNode (child)
paintEdge (node, child)
end
end
if node.collapsingSize > 0 then
create node collapsedChild with size
node.collapsingSize and green color
paintNode (collapsedChild)
paintEdge (node, collapsedChild)
end

end

Algorithm 3: drawNode

For a graphical representation, the previously computed
compacted tree representation is exported into a graphML-
file (cf. Listing 1). The graphML file format is an XML-
based standard and a file format for graphs. It is capable of
describing all previously computed structural properties and
applied in many graph related software applications.

<?xml version="1.0" encoding="UTF-8” standalone="
no” 7>

<graphml xmlns="http://graphml. graphdrawing.org/
xmlns/graphml” xmlns:xsi="http://www.w3.org
/2001 /XMLSchema—instance” xmlns:y="http://www.
yworks.com/xml/graphml” xsi:schemaLocation="
http://graphml. graphdrawing.org/xmlns/graphml
http://www.yworks.com/xml/schema/graphml/1.0/
ygraphml. xsd”>

<graph edgedefault="directed” id="G2297>
<node id="http://www.mpi—inf.mpg.de/index.html”>
<data key="d0”>
<y:ShapeNode>
<y:Geometry width="10.003” height="10.003"/>
<y:Fill color="#00FF00” transparent="false”/>
<y:Shape type="ellipse” />
</y:ShapeNode>
</data>
<data key="d1”>http://www.mpi—inf.mpg.de/index.
html OK</data>
</node>

<edge source="http://www.mpi—inf.mpg.de/index.
html” target="dns:www.mpi—inf.mpg.de” />
</graph>
</graphml>

Listing 1: Coherence defect graphML-file (excerpt)

S. COHERENCE DEFECT ANALYSIS

The coherence defect analysis measures the quality of crawls
either from crawl-recrawl pairs, between any two crawls, or a
series of crawls. To this end, we have developed methods for
automatically generating sophisticated statistics and visual-
izations (e.g. number of defects occurred sorted by defect
type).

5.1 Structural and Content Change Analysis

with visone

As described Section 4.3, our extension to Heritrix allows us
to trace the crawling process with statistical data and export
this data compliant to graphML. By applying graphML com-
pliant software it is also possible to layout a crawl’s spanning
tree and visualize its coherence defects. This visual metaphor
is intended as an additional means to automated statistics for
understanding the problems that occurred during capturing.
Its main field of application is the analysis of high quality
(single) Web site crawls.

Figure 3 depicts a sample visualization of an mpi-inf .mpg.de
domain crawl (about 65.000 Web contents) with the visone
software (cf. http://visone.info/ for details). Depending
on the nodes’ size, shape, and color the user gets an immedi-
ate overview on the success or failure of the capturing process.
In particular, a node’s size is proportional to the amount
of coherent Web contents contained in its sub-tree. In the
same sense, a node’s color highlights its “coherence status”.
While green stands for coherence, the signal colors yellow
and red indicated (content incoherence and/or link structure

;2 html

Legend:

‘ :: coherent

:: image, video, audio

i javascript, flash, css, rdf

‘ .2 link structure incoherent

O
O
:: content incoherent (text only) A :ndns
)
[]

:: pdf, zip, ps other binary data (without multimedia)

‘ :: content completely removed
J

AN

Color :: Coherence Status Shape :: MIME Type

Figure 3: Coherence defect visualization of a single crawl-recrawl pair of mpi-inf.mpg.de by visone

(a) Pair 1/2 (b) Transition 1/2—2/3

oo./’ .
o

(f) Transition 3/4—4/5 (g) Pair 4/5

(c) Pair 2/3

(d) Transition 2/3—3/4 (e) Pair 3/4

4 /ot.'

(h) Transition 4/5—5/6 (i) Pair 5/6

Figure 4: Tracing of coherence defects in crawl-recrawl pairs of the dmoz.org/news subdomain over time

incoherence). The most serious defect class of missing con-
tents is colored in black. Finally, a node’s shape indicates its
MIME type ranging from circles (HTML contents), hexagons
(multimedia contents), rounded rectangles (Flash or similar),
squares (PDF contents and other binaries) to triangles (DNS
lookups).

An extension to a single crawl-recrawl pair analysis is their
analysis over time. The idea behind this approach is to trace
coherence defects among several crawls and to identify those
contents, which are less frequently changing and — thus —
more likely to be coherent. Figure 4 depicts a coherence
defect visualization series of six subsequent crawls on the
dmoz.org/news subdomain. For each subsequent pair of
crawls a coherence defect visualization like in the previous
example is being performed. In contrast to before, now
we compare the crawls themselves instead of their crawl-
recrawl pairs. In the transitions between any two of these
pairs all those nodes are faded out, which disappear in the
coming coherence defect analysis. In contrast, those contents
showing the same coherence characteristic between two crawl
pairs remain solid and the newly appearing nodes are located
around them. Interesting to see in this example is that there
is a solid core of a large coherent subtree and its always
content-wise incoherent predecessor node.

5.2 Content Change Analysis with Scatterplots
Two and three-dimensional scatterplots can be employed to
visualize, locate and analyze the content changes and to some
extent the structural changes. Figures 5-6 show scatterplot
visualizations for the sabre and royal-navy sites from the
UKGOV database. Here the scatterplot visualizations map
the mime-type, the size of the and the URL of the page to
the X, Y, and Z axes of the three-dimensional cube, while
the color shows whether the change took place (new pages
are colored blue, changed pages are colored red, while the
black color depicts unchanged pages). The archivist should

look for patterns of changed and added pages. For example
from Figure 5(a) one can see that there are a few changes in
the HTML files in the output and textonly subdirectories (cf.
the red points in the figure) and a whole new subdirectory
of files are added into the Web archive (cf. the blue points
at the top of the visualization). The changes of the pages
(cf. the four red points) indicate the dependencies between
the pages: if a page changes in the output directory then
the corresponding page will change in the textonly directory.
The newly added pages show that the Web site underwent
significant changes in terms of structure, though content
wise the site did not vary much. Very few additional pages
were introduced in Crawl 2 indicating a high quality of the
archive.

Likewise, patterns of newly added images are similar for
the royal-navy site (cf. image/jpeg and image/gif pages
in Figures 6(a)-6(b)), while the patterns of newly added and
changed HTML pages differ slightly showing the changing
structure of the Web site.

5.3 Time Series Analysis with Area Plots

The series of the area plots (cf. Figures 7-8) can be used to get
an overview of the percentage of change in the crawls of Web
archives of sites as the crawl id increases. The X axis maps to
the crawl id, while the Y axis maps either to the number of
changed /unchanged /new/deleted pages or the percentage/-
download time. Separate figures are typically drawn for links
(graph structure of the site, cf. Figures 7(a)-8(a)), HTML
pages (cf. Figures 7(c)-8(c)), images (cf. Figures 7(d)-8(d))
(content changes) along with a figure for a similarity and
the time of download (cf. Figures 7(b)-8(b)). The archivist
should look for patterns that significantly change at certain
time points. For example, one can see that there is a sig-
nificant change in the Web site in crawls 52 and 93. The
crawl time suggests that in crawl 52 the Web site underwent
significant changes, however in crawl 93 the quality of the

application/x-javascript

(a) Crawl 1

tr. lastindexof(

textyplain

/ text/html

/
NIAN / -

60000
same m—
deleted mm—
50000 new

40000
30000
20000
10000

(a) Links

1.2e+06
same m—
deleted mmm—
1le+06 new

800000
600000
400000
200000

0
40 60 80 100 120

(a) Links

z

(a) Crawl 1

1e+07
1e+06
100000
10000
1000
100

10 ¢ time
sim
40 60 80 100 120

(b) Similarity and Time

1le+07 1
1e+06
100000
10000
1000 .
time
sim

00
40 60 80 100 120

(b) Similarity and Time

text/html; charset=iso-8859-1

3.a8er08

alication/xjavascript

(b) Crawl 2

Figure 5: Crawl sequence analysis of www.sabre.mod.uk site

Wt . astindexof(

data

static

> A
"
R T\ \
X —A4.63e+05 3a7e+ 05 1.16e+05 36 "
video/quicktime
Ll T T \/ »

»oRRALA
wopdera s,

we/ s

>

N

textiplain

text/ntml; charset=iso-8859-1

text/ntml

texticss

imagefjpeg

image/gt

z

(b) Crawl 2

1200
same m—

changed mmm
1000 deleted mm—u

800
600
400
200

40 60 80 100 120

(c) HTML pages

40000 |y e e
35000 [deleted mmm—
30000 new
25000

20000

15000

10000

5000 |,

40 60 80 100 120

(c) HTML pages

Figure 6: Scatterplot analysis of www.royal-navy.mod.uk site

1000
same m—

changed mmm
800 1 deleted mmm—s

new m—

600

400

200

0
40 60 80 100 120

(d) Images

Figure 7: Crawl sequence analysis of www.sabre.mod.uk site

50000 same
45000 changed s
40000 | deleted mm—
35000 new m—
30000
25000
20000
15000
10000
5000
0

40 60 80 100 120

(d) Images

Figure 8: Crawl sequence analysis of www.royal-navy.mod.uk site

archive decreased due to some archiving issues. Even more,
one can see that the Web site itself greatly shrank over time.

Computation of area graphs can be expressed in pure SQL
and optimized by the query optimizer (cf. Listing 4 in
the Appendix) resulting in the overall O(nlogn) or better
complexity. The algorithm selects the tuples of the site of
crawl XXX and the previous crawl (cf. Lines 31-40) and uses
the full outer join to join the crawls. The tuples that are in
one or the other crawl (but not both) are new and deleted
pages, while the remaining tuples result into either changed
or the unchanged ones (cf. Lines 10-15). The new, deleted,
changed, and unchanged tuples are grouped and summed up
(cf. Lines 1-10).

5.4 Time Series Analysis with Scatterplots
Change patterns in the pages of one site can be analyzed
with a scatterplot of time series data (cf. Figure 9). In the
figure the Y axis maps the pages, the X axis maps the crawl
id, and a cross is visualized at (crawl id, page) position if
there was a change in the Web page at the given crawl id
compared to the previous crawl id. The pages on the Y axis
are ordered so that pages showing a similar change behavior
are placed close to each other.

3300 T T T T T T

2000

2500

2000

it I = +
- .uaﬁ Hi“ # oo et ik e o
4.

4
+ P LN T 2]
it +
-]
E= =y
o A 1 1 L 1
a o0 T0 60 =0 100 1m 140

Figure 9: Scatterplot of lines for www.sabre.mod.uk

The figure helps the Web archivist to detect and analyze pages
that have similar change and coherence defect patterns. The
visualization clearly separates the pages of the Web site into
distinct blocks (cf. rectangles in the visualization) identifying
different patterns of change and coherence defects.

6. LESSONS LEARNED AND FUTURE WORK

From an archiving point of view, the ideal case in Web archiv-
ing would be to prevent contents from changing during crawl
time. Of course, this is illusion and practically infeasible.
Consequently, one may never be sure if the contents collected
so far are still consistent with those contents to be crawled
next. However, temporal coherence in Web archiving is a key
issue in order to crawl digital contents in a reproducible and,
thus, later on interpretable manner. To this end, we have
developed an extension of Heritrix that is capable of dealing
with proper as well as improper dated contents. Hence, we
are able to make coherence defect analysis more efficient,

regardless of how unreliable Web servers are. Altogether, the
analysis and visualization features developed aim at helping
the crawl engineer to better understand the nature of coher-
ence defects within or between Web sites and — consequently
— to adapt the crawling strategy/frequency for future crawls.
As a result, this will also help increase the overall archive’s
coherence.

While our coherence defect analysis now helps us to under-
stand incoherence more systematically, future research needs
to make these insights productive. Hence, ongoing research
aims toward partial crawling and increased archive coverage
(e.g. more time points / complete interval). Even more,
the combination of partial recrawls in combination with an
increased (partial) crawling frequency might be particularly
appealing from an efficiency point of view. In addition, re-
sults obtained from real life crawl analysis will be useful
for the creation of sophisticated simulation environments.
Hence, we will be able to resemble real life change behavior
and simulate real life Web site topologies in a simulation
framework.

Acknowledgements

This work was supported by the 7t Framework IST programme
of the EC through the small or medium-scale focused research
project (STREP) on Living Web Archives (LiWA) contract no.
216267. We thank our colleagues for the inspiring discussions.

7. REFERENCES
[1] Brian E. Brewington and George Cybenko. Keeping up with

the changing web. Computer, 33(5):52-58, May 2000.

Junghoo Cho and Hector Garcia-Molina. The evolution of

the web and implications for an incremental crawler. In

VLDB ’00: Proceedings of the 26th International Conference

on Very Large Data Bases, pages 200—209, San Francisco,

CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Junghoo Cho and Hector Garcia-Molina. Effective page

refresh policies for web crawlers. ACM Transactions on

Database Systems, 28(4), 2003.

Junghoo Cho and Hector Garcia-Molina. Estimating

frequency of change. ACM Trans. Inter. Tech., 3(3):256-290,

August 2003.

Junghoo Cho, Hector Garcia-Molina, and Lawrence Page.

Efficient crawling through url ordering. In WWW?7:

Proceedings of the seventh international conference on

World Wide Web 7, pages 161-172, Amsterdam, The

Netherlands, The Netherlands, 1998. Elsevier Science

Publishers B. V.

L. Clausen. Concerning etags and datestamps. In A. Rauber

J. Masanes, editor, 4th International Web Archiving

Workshop (IWAW’04), 2004.

Dimitar Denev, Arturas Mazeika, Marc Spaniol, and

Gerhard Weikum. Sharc: Framework for qualityconscious

web archiving. In VLDB ’09: Proceedings of the 35th

international conference on Very Large Data Bases. VLDB

Endowment, 2009.

International Internet Preservation Consortium. Arc_ia,

internet archive arc file format. http://www.

digitalpreservation.gov/formats/fdd/£dd000235.shtml.

International Internet Preservation Consortium. Warc, web

archive file format. http://www.digitalpreservation.gov/

formats/fdd/£fdd000236.shtml.

[10] Panagiotis G. Ipeirotis, Alexandros Ntoulas, Junghoo Cho,
and Luis Gravano. Modeling and managing changes in text
databases. ACM Trans. Database Syst., 32(3):14, 2007.

[11] Adam Jatowt, Yukiko Kawai, and Katsumi Tanaka.
Detecting age of page content. In WIDM, pages 137-144,
2007.

[2

3

[4

5

6

7

=

[9

[12] Julien Masanes. Web Archiving. Springer, New York, Inc.,
Secaucus, NJ, 2006.

Frank McCown and Michael L. Nelson. Evaluation of
crawling policies for a web-repository crawler. In Hypertext,
pages 157-168, 2006.

Frank McCown, Joan A. Smith, and Michael L. Nelson. Lazy
preservation: reconstructing websites by crawling the
crawlers. In WIDM, pages 6774, 2006.

G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic.
Introduction to heritrix, an archival quality web crawler. In
4th International Web Archiving Workshop (IWAW’04),
2004.

Marc Najork and Janet L. Wiener. Breadth-first search
crawling yields high-quality pages. In In Proc. 10th
International World Wide Web Conference, pages 114-118,
2001.

Sérgio Nunes, Cristina Ribeiro, and Gabriel David. Using
neighbors to date web documents. In WIDM, pages 129-136,
2007.

Christopher Olston and Sandeep Pandey. Recrawl scheduling
based on information longevity. In WWW ’08: Proceeding of
the 17th international conference on World Wide Web,
pages 437-446. ACM, 2008.

M. Spaniol, D. Denev, A. Mazeika, P. Senellart, and

G. Weikum. Data Quality in Web Archiving. In Proceedings
of WICOW, Madrid, Spain, April 20, 2009, pages 19 — 26.
ACM Press, 2009.

Qingzhao Tan, Ziming Zhuang, Prasenjit Mitra, and C. Lee
Giles. Efficiently detecting webpage updates using samples.
In ICWE, pages 285-300, 2007.

(13]

[14]

15]

[16]

(17]

(18]

[19]

(20]

APPENDIX

-crawl id
title
| t,pages scope
[-page_id strategy

~recrawled id

url_id

i 1

site_id ~url id-]

etag url

page_size =

page_type = \1& -
—parent_page_id

.. . site id4~ 4.1
visited_timestamp - :
content site

checksum
last_modified \\l t_links \ / |
—vs_page_id “from_page_id |
status_code crawl_id /
download_time from_site_id
mime_id from_url_id:
sig0—sig9 to_urlid
filename to_site_id
visited_timestamp
link_type

Figure 10: DB Schema

25

create table t_pages_dd as
select t_pages.* from (
select crawl_id, url_id , max(visited_timestamp)
as latest_timestamp
from t_pages
group by crawl_id, url_id) as x, t_pages
where t_pages.crawl_id = x.crawl_id and
t_pages.url_id = x.url_id and
t_pages.visited_timestamp
= x.latest_timestamp

create table t_links_dd as
select t_links .x*
from t_pages_dd, t_links
where t_pages_dd.url_id = t_links.
t_pages_dd . visited_timestamp
= t_links.visited_timestamp

from_url_id and

Listing 2: Deduplication

create table clean_mapping as
select dirty_url.url_id as dirty_url_id ,
clean_url.url_id as clean_url_id

from (
select min(url_id) as url_id, lower(url) as url
from t_urls group by lower(url)

) as clean_url, t_urls as dirty_url

where clean_url.url = lower(dirty_url.url);

create table lower_url_dd as

select crawl_id,
clean_mapping.clean_url_id as url_id ,
lower (min(url)) as url, site_id as site_id,
min(etag) as etag,
min(page_size) as page_size ,
min(page_type) as page_type,
min(visited_timestamp) as visited_timestamp ,
min(checksum) as checksum,
min(last_modified) as last_modified ,
min(status_code) as status_code,
min(download_time) as download_time,

min(sig0) as sig0, min(sigl) as sigl,
min(sig2) as sig2, min(sig3) as sig3,
min(sig4) as sig4 , min(sigh) as sigh,
min(sig6) as sig6, min(sig7) as sig7,
min(sig8) as sig8, min(sig9) as sig9,

min(mime_id) as mime_id,
min(filename) as filename
from t_pages_dd, clean_mapping
where t_pages_dd.url_id
= clean_mapping.dirty_url_id
group by t_pages_dd.crawl_.id, t_pages_dd.site_id ,
clean_mapping.clean_url_id

Listing 3: SQL for cleaning to lower urls

1| select XXX as crawl_id, site_id ,

2 coalesce (deleted ,0)+coalesce (nnew,0) +

3 coalesce (same,0)+coalesce (changed ,0) as nall,
4 deleted , nnew, same, changed from (

5 select site_id ,

6 max(deleted) as deleted , min(nnew) as nnew,
7 min(same) as same, min(changed) as changed
8 from (

9 select site_id ,

10 case when status=’deleted’ then count

11 end as deleted ,

12 case when status=’new’ then count end as nnew,
13 case when status=’same’ then count end as same,
14 case when status=’changed’ then count

15 end as changed from (

16 select ssite_id as site_id , status,

17 count(site_id) from (

18 select

19 case

20 when nprev.site_id is null

21 then ncurr.site_id

22 else nprev.site_id

23 end as ssite_id ,

24 case

25 when nprev.site_id is null then ’'new’
26 when ncurr.site_id is null then ’deleted’
27 when nprev.new_check_sum

28 = ncurr.new_check_sum then ’same’
29 else ’changed’

30 end as status

31 from (

32 select site_id ,url_id ,new_check_sum
33 from nodes

34 where crawl_id = XXX-1

35) as nprev

36 full outer join (

37 select site_id ,url_id ,new_check_sum
38 from nodes

39 where crawl_id = XXX

40) as ncurr

41 on nprev.site_id = ncurr.site_id and

42 nprev.url_id = ncurr.url_id

43) as crawls_with_status

44 group by ssite_id , status

45) as crosstab_multiple_rows

46) as crosstab_single_row

47 group by site_id

48|) as aggregated

Listing 4: SQL for area bars

	ECDL2009_Workshop_Notes 225
	ECDL2009_Workshop_Notes 226
	ECDL2009_Workshop_Notes 227
	ECDL2009_Workshop_Notes 228
	ECDL2009_Workshop_Notes 229
	ECDL2009_Workshop_Notes 230
	ECDL2009_Workshop_Notes 231
	ECDL2009_Workshop_Notes 232
	ECDL2009_Workshop_Notes 233
	ECDL2009_Workshop_Notes 234
	ECDL2009_Workshop_Notes 235

