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ABSTRACT 
The purpose of this study was to compare the effect of Physical Manipulatives (PM) and the combination of 
Physical Manupulatives with Virtual Manipulatives (VM) on pre-service teachers’ understanding of scientific 
concepts in the domain of heat and temperature. A pre-post comparison study design was conducted that involved 
62 undergraduate pre-service elementary school teachers enrolled in an introductory course  in heat and 
temperature that was based upon the Physics by Inquiry curriculum (McDermott and The Physics Education 
Group, 1996). The participants were assigned to an experimental (EG, 34 students) and a control group (CG, 28 
students). The CG used PM to conduct the experiments, whereas, the EG used a combination of PM and VM. 
Conceptual tests were administered to assess students’ understanding before, during, and after the study The data 
analysis involved both quantitative and qualitative methods of analysis. The quantitative analysis showed that 
experimenting with the combination of PM and VM enhanced students’ conceptual understanding more than 
experimenting with PM alone. The qualitative analysis revealed that the EG had a larger shift from not scientific 
accepted conceptions to scientific accepted conceptions concerning changes in temperature, heat and heat 
transfer than the CG. 
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INTRODUCTION 
 
During the past decade there have been many optimistic claims about the potential of virtual reality to 
enhance science laboratory teaching and learning (Barab et al., 2000). In fact, Virtual Manipulatives 
(VM), provided through interactive computer-based simulations, have proven to have a positive impact 
on students’ evolving skills, attitudes, and conceptual understanding (de Jong & Njoo, 1992; Doerr, 
1997; Finkelstein et al., 2005; Goldberg & Bendall, 1995; Goodyear, 1992; Gorsky & Finegold, 1992; 
Grayson, 1996a; Hewson, 1985; Hsu & Thomas, 2002; Huppert & Lazarowitz, 2002; Kaput, 1995; Lea 
et al., 1996; Mandinach & Cline, 1994; Ravenscroft, 2000; Shin et al., 2003; Tao & Gunstone, 1999; 
Vreman-de Olde & de Jong, 2004; Zacharia, 2003, 2005, 2007; Zacharia & Anderson, 2003). In spite of 
these findings, some researchers have seriously questioned whether laboratory experimentation in 
science education, as we experienced it through Physical Manipulatives (PM), should be redefined and 
restructured to include VM, (Triona and Klahr, 2003; Zacharia, 2007). The ultimate goal is to take 
advantage of the potentials of both in order to maximize to the highest possible degree the effectiveness 
of experimentation (Zacharia, 2007). 
 
Hofstein and Lunetta (2004) emphasized the value of learning through experimentation. They explained 
that experimentation, involving either PM or VM, shifts from teacher directed learning to student 
directed learning, thus allowing students to interact with materials and models in order to take control of 
their own learning in the search for understanding of the natural world. A lot of researchers today 
emphasize on the importance of rethinking the role and practice of experimentation in science teaching 
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in promoting conceptual understanding (Bybee, 2000; Lunetta, 1998; NRC, 1999; Zacharia 2007). 
Research in science education (e.g., Zacharia, 2007) has shown that experimentation with PM or VM 
could enhance learner’s conceptual understanding when learners are provided (a) with the opportunity 
to ask questions, suggest hypotheses, and design investigations - “minds-on as well as hands-on” 
(Gunstone & Champagne 1990; Gunstone 1991), and (b) with frequent opportunities for feedback, 
reflection, and modification of their ideas (Barron et al. 1998).  In other words, both methods of 
experimentation could provide an exploratory learning environment, especially when grounded in 
inquiry, which allows the student to inquire into the event presented, to directly manipulate initial 
conditions (e.g., alter the values of variables), to initiate processes, to probe conditions and to observe 
the results of these actions (de Jong & Njoo 1992; Zacharia & Anderson 2003; Hofstein & Lunetta 
2004). This unique combination of features enables students to interpret the underlying scientific 
conceptions of the phenomenon studied, compare them with their own conceptions, formulate and test 
hypotheses, reconcile any discrepancy between their ideas and the observations in the experiments, and 
discover and develop explanations for the mechanisms and processes underlying the physical 
phenomenon presented through the experimentation with PM or VM (Bybee 2000; Casey 1996; 
Hofstein & Lunetta 2004; Hsu & Thomas 2002; Raghavan & Glaser 1995; Tao & Gunstone 1999).  
 
Even though there is considerable research in science education on how the use of PM and VM alone 
enhance conceptual understanding of science (Zacharia, 2007), the scientific literature lacks studies that 
investigate the impact that different combinations of the two formats of experimentation have on 
students’ conceptual understanding of science (Winn et al., 2006), or studies that compare the impact 
that these two methods of experimentation have on students’ conceptual understanding in science 
(Finkelstein et al., 2005; Triona & Klahr, 2003; Winn et al., 2006). This study was designed in an 
attempt to contribute towards this direction. Specifically, it was designed to investigate how the effect 
of experimenting with VM and PM on students’ conceptual understanding in the domain of heat and 
temperature compared at a specific part of the study’s curriculum and whether the effect of 
experimenting with PM on students’ conceptual understanding of heat and temperature changed when 
PM were complemented with VM. 
 
The selection of the domain of heat and temperature for the purposes of this study is justified in terms 
of its importance as a school science subject and for its pervasiveness in adult life. In addition, several 
virtual tools exist that provide the learning environment that supports experimentation in this domain 
(features and interactions of the domain are retained in the virtual world). Lastly, students’ conceptions 
of heat and temperature have been extensively studied (Arnold & Millar, 1994; 1996; Brook et al., 
1984; Driver et al., 1985; Erickson, 1979; 1980; Erickson & Tiberghein, 1985; Grayson, 1994; 1996b; 
Harisson et al., 1999; Kesidou & Duit, 1993; Kesidou et al., 1995; Leite et al., 2007; Linn & Songer, 
1991; Paik et al., 2007; Rogan, 1988; Rosenquist et al., 1982; Stavy & Berkovitz, 1980; Taber, 2000;  
Tiberghien, 1980; Wiser & Amin, 2001; Wiser & Carey, 1983). For example, researchers found that the 
conceptions of heat and temperature are usually poorly differentiated (Brook et al., 1984). Erickson 
(1977) stated that, the differentiation between heat and temperature is one of the greatest difficulties 
that students confront. The students tend to believe that temperature is the mixture of hot and cold in an 
object or just the measure of the quantity of heat of an object, without doing any separation between the 
measure (temperature) and the quantity of transferred energy (heat) (Driver et al., 1998). Driver et al. 
(1998) also found that many individuals believe that the temperature of an object relates with its size, its 
volume or its mass. They consider temperature as a physical property of the material. Their every day 
experience, in which they touch objects, enforces their conception that specific materials are from their 
nature hotter or colder than others. These findings along with the findings of other research on students’ 
conceptual understanding in the domain of heat and temperature compose an important set of 
knowledge that could inform the development or selection of effective research intervention materials 
and strategies. In fact, the Physics by Inquiry curriculum was selected because it has been shown, when 
being implemented through the use of PM and/or VM, to be an effective approach to science learning 
for undergraduate students (e.g., McDermott, 1992; Redish & Steinberg, 1999; Rosenquist et al., 1982; 
Thacker et al., 1994; Zacharia, 2007). 
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METHODOLOGY 
 
Sample 
The participants of the study were 62 undergraduate students, enrolled in an introductory physics course 
that was based upon the Physics by Inquiry curriculum (McDermott and The Physics Education Group, 
1996), intended for pre-service elementary school teachers. The course took place at a university in Cyprus. 
The participants were separated into two groups, namely, the Control Group (CG, 34 students) and the 
Experimental Group (EG, 28 students). None of the participants had taken college physics prior to the 
study.   
 
In addition, the students in all groups were randomly assigned to subgroups (of three) as suggested by 
the curriculum of the study (McDermott & The Physics Education Group, 1996). As mentioned before, 
this particular curriculum is grounded upon a social constructivist framework that provides 
opportunities for joint decision-making about manipulating events and intellectual transactions about 
the meaning of resultant phenomena. Partners negotiate what actions to take in the experiment and they 
also negotiate the meaning of the observed events (Windshitl, 2001). 
 
Curriculum materials: Physics by Inquiry 
For the purposes of this study the first three sections of the first part of the module of Heat and 
Temperature were used (McDermott and The Physics Education Group, 1996, p.163). Specifically, the 
curriculum sections used in this study, focus on constructing an operational definition for temperature 
(section 1), on investigating temperature changes when samples of hot and cold water are mixed 
(section 2), and on heat and heat transfer (section 3). 
 
Manipulatives 

 
Physical Manipulatives 

The experimentation with PM involved the use of real instruments (thermometers), objects [containers 
(beakers and Styrofoam cups) and heaters] and materials [solids (wood and aluminum) or liquids 
(water)] in a conventional physics laboratory.  

 
Virtual Manipulatives 

The experimentation with VM involved the use of virtual instruments (thermometers), objects 
[containers (beakers and Styrofoam cups) and heaters] and materials [solids (wood and aluminum) or 
liquids (water)] to conduct the study’s experiments on a computer. In this study, the Virtual Lab 
ThermoLab (see Figure 1) was used for this purpose [for more details on the ThermoLab see 
Hatziktaniotis et al. (2001); see also Lefkos, Psillos & Hatzikraniotis (2005), Petridou et al. (2005) and 
Psillos et al. (2000)]. 

 
 

Figure 1. Thermolab 
Experimental Design 
A pre-post comparison study design was used for the purposes of this study that involved two groups, 
EG and CG, according to Figure 2. The CG used PM in a conventional physics laboratory throughout 
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the study, whereas, the EG used PM in a conventional physics laboratory for Part A of the study’s 
curriculum (Section 1 of the Physics by Inquiry curriculum, McDermott and The Physics Education 
Group, 1996, p.163) and VM to conduct the study’s experiments on a computer for Part B of the 
curriculum (Sections 2 and 3 of the Physics by Inquiry curriculum, McDermott and The Physics 
Education Group, 1996, p.168).  
 

 
Figure 2. The experimental design of the study 

 
Data Collection  
Conceptual tests were administered to assess students’ understanding in the concepts of heat and 
temperature both before and after the study (Heat & Temperature Test or H&T Test), as well as, both 
before and after introducing each part (A and B) of the study’s curriculum (see Figure 2). The tests were 
developed and used in previous research studies by the Physics Education Group of the University of 
Washington (e.g., Rosenquist et al., 1982). 
 
Data Analysis 
The data analysis involved both quantitative and qualitative methods. The quantitative analysis involved 
(a) paired-samples t-test for the comparison of the H&T pre-test scores to the H&T post-test scores of 
each group, (b) ANCOVA for the comparison of the H&T post-test scores of the two groups, and (c) 
ANCOVA for the comparison of the post-test 2 scores of the two groups, The aim of the first procedure 
was to investigate whether the use of the combination of PM and VM, and the use of PM alone, within 
the context of the Physics by Inquiry curriculum, improved students’ conceptual understanding. The 
aim of the second procedure was to investigate whether the effect of PM on undergraduate students’ 
conceptual understanding of heat and temperature changed when PM was complemented with VM. The 
aim of the third procedure was to investigate whether the substitution of VM for PM had a different 
effect on students’ conceptual understanding of Part B of the study’s curriculum. 
 
The qualitative data analysis focused on identifying and classifying students’ scientific (SAC) and non 
scientific conceptions (NSAC) concerning changes in temperature, heat and heat transfer (Part B). The 
analysis followed the procedures of phenomenography (Marton & Booth 1997). In addition, the 
prevalence for each one of the resulting categories for each test was calculated. The purpose of the latter 
was to compare if the prevalence of each category of students’ conceptions differed prior to and after 
Part B because of the substitution of VM for PM.  
 
To ensure objective assessment, the tests were coded and scored anonymously. Internal reliability data 
were also collected. Two independent coders reviewed 25% of the data. All the reliability measures 
(Cohen’s Kappa for the quantitative part and proportion of agreement for the qualitative part) were 
above 0.87.  
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RESULTS  
 

The quantitative analysis showed that the combination of PM and VM and PM alone improved 
students’ conceptual understanding after the study (p<0.001 for both comparisons). However, the 
ANCOVA designated that the students of the EG had significantly greater H&T post-test scores than 
the students of the CG after the study (p=0.04). Moreover, a second ANCOVA revealed that the 
substitution of VM for PM had a significant effect on students’ conceptual understanding of Part B. It 
was found that the EG had significantly higher scores on post-test 2 than the CG (p<0.001). 
 
The phenomenographic analysis revealed that the conceptions of EG and CG appeared to be organized 
in three catecories (see Table 1): (a) heat vs temperature (e.g. measure units, characteristics, intensive- 
extensive quantities etc.) (b) thermal interaction/changes in temperature and (c) factors causing 
temperature changes/heat transfer. In addition, the analysis revealed that the two groups shared mostly 
the same conceptions either scientifically accepted (SAC) or not (NSAC), both before and after the 
research intervention (see Table 1). However, the prevalence of each conception between the two 
differed. Between the two groups the EG was found to have, in post-test 2, the highest prevalence for 
each SAC and the least for each NSAC. This finding indicates that EG appeared to better promote the 
students’ conceptual understanding of changes in temperature, heat and heat transfer, than the CG. 
 
 

Table 1: Sample of NSAC regarding the understanding of heat and temperature as they emerged from 
the phenomenographic analysis 

Control Group 
(n= 28) 

Experimental Group 
(n=34) 

 
Conceptions concerning the 
understanding of heat and 
temperature  

Pre tests 
% (n) 

Post tests 
% (n) 

Pre tests 
% (n) 

Post tests 
% (n) 

Heat vs Temperature 
Heat and temperature are the 
same entities  7,14% (2) 0% (0) 0% (0) 0% (0) 

Thermal interaction  
When two samples of water 
(of different temperatures) are 
mixed, temperature from the 
hot sample is transmitted to 
the cold one.  

64,29% (18) 25% (7) 73,52% (25) 26, 47% (9) 

Ice and water cannot coexist 
at the same temperature 53,57% (15) 3,57% (1) 70,59% (24) 5,88% (2) 

Temperature changes (heat transfer) 
When two samples of water 
of the same temperature are 
mixed, the temperature of 
both samples changes 
according to their mass. 

25% (7) 7,14% (2) 14,71% (5) 0% (0) 

 
DISCUSSION AND CONCLUSION 
 
The findings of this study indicate that the use of PM combined with VM or the use of PM or VM 
alone, when grounded in the framework of the Physics by Inquiry curriculum, can provide interactive 
experiences that enhance students understanding of concepts related to heat and temperature. However, 
both the quantitative and qualitative analysis showed that experimenting with VM in combination with 
PM or experimenting with VM alone could promote student conceptual understanding, concerning 
changes in temperature, heat and heat transfer (Part B), to a greater extent than PM alone. These 
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findings challenge the general assumption that only physical manipulation improves learning. 
Therefore, the use of VM should not be considered as an excellent substitute of the use of PM, as is 
usually the case, but as a method of experimentation with great potential, which could be used in 
combination with PM or even alone, at least within a learning environment similar with the one used in 
this study.  
 
VM should not, by any means, replace PM or any activity aimed at experiencing and investigating the 
real phenomena. VM are valued for their flexibility of use, availability for revision and provision of 
additional information, whereas PM are valued for the hands-on, 3D nature but also for their “reality”. 
However, according to Triona and Klahr (2003), science educators should not be “wedded” to PM “on 
the basis of folk psychology or vague theory” (p. 171). There is emerging evidence that VM deserves to 
be given the opportunity to prove itself beyond a series of experiments that might be too expensive, too 
dangerous or difficult to carry out in real laboratories within specified time constraints (Triona & Klahr, 
2003; Zacharia, 2007). 
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