
Lexicon Induction for Interpretable
Text Classification

Jérémie Clos(B) and Nirmalie Wiratunga

Robert Gordon University, Garthdee Road, Aberdeen, UK
{j.clos,n.wiratunga}@rgu.ac.uk

Abstract. The automated classification of text documents is an active
research challenge in document-oriented information systems, helping
users browse massive amounts of data, detecting likely authors of
unsigned work, or analyzing large corpora along predefined dimensions
of interest such as sentiment or emotion. Existing approaches to text
classification tend toward building black-box algorithms, offering accu-
rate classification at the price of not understanding the rationale behind
each algorithmic prediction. Lexicon-based classifiers offer an alternative
to black-box classifiers by modeling the classification problem with a
trivially interpretable classifier. However, current techniques for lexicon-
based document classification limit themselves to using either hand-
crafted lexicons, which suffer from human bias and are difficult to extend,
or automatically generated lexicons, which are induced using point-
estimates of some predefined probabilistic measure in the corpus of inter-
est. This paper proposes LexicNet, an alternative way of generating
high accuracy classification lexicons offering an optimal generalization
power without sacrificing model interpretability. We evaluate our app-
roach on two tasks: stance detection and sentiment classification. We
find that our lexicon outperforms baseline lexicon induction approaches
as well as several standard text classifiers.

Keywords: Text classification · Lexicon induction · Sentiment analy-
sis · Stance classification

1 Introduction

Text classification is a core task in natural language processing, with applica-
tions ranging from web search to author detection. For example, support vector
machines [11], a common and extremely powerful classification algorithm [10]
have helped improve document navigation tasks by categorizing web search
results [4], analyzed corpora to identify anonymous authors [7], and are used to
identify spam e-mails [8] at large scale. However, supervised classification algo-
rithms suffer from not providing predictions that can be explained. Understand-
ing the reason behind a classification allows us to establish trust in further pre-
dictions, which can have far-reaching consequences in algorithms deployed in pro-
duction systems such as search engines and document categorization pipelines.
c© Springer International Publishing AG 2017
J. Kamps et al. (Eds.): TPDL 2017, LNCS 10450, pp. 498–510, 2017.
DOI: 10.1007/978-3-319-67008-9 39

Lexicon Induction for Interpretable Classification 499

Lexicons attend to this need by offering a white-box approach to text mining.
They do so by using an additive model, where the probability of an instance
belonging to a class is a weighted sum of the probabilities of each term belong-
ing to that class.

A lexicon prediction can thus be interpreted by observing the terms that are
contained in the instance and the terms which have contributed the most to the
prediction, and it is possible for a human agent to modify the model in order
to correct a mistake without restarting the learning process entirely. Figure 1
illustrates the explanation step with an example.

However, current techniques used to build those lexicons are lacking in many
respects compared to standard supervised text classifiers. This paper attempts
to conciliate lexicon-based classification and traditional classification models by
defining a simple and effective training procedure that can generate lexicons
with a classification accuracy that is competitive with modern classification
algorithms. Firstly, they use point estimates of text statistics (such as raw co-
occurrence or mutual information) in order to build a lexicon that is susceptible
to overfitting. Secondly, they perform significantly worse than black-box models.

Example 1. In a binary sentiment classification setting, for a
given sentence “I love horror books”, a lexicon L referred on the
figure, the lexicon could find an aggregated score of f(love) ×
1.0 + f(horror)× 0.3 + f(books)× 0.5 = 1.8 for the Positive
class, and f(love)×0+f(horror)×0.7+f(books)×0.5 = 1.2
for the Negative class, where f is a function measuring some no-
tion of local term frequency. The decision functionD would then
return the class with the maximum value, i. e., Positive. A human
reader can read the sentence and identify that the term “love”
is responsible for tipping the classification towards the Positive
class.

Example Lexicon

Term Positive Negative

love 1.0 0.0
horror 0.3 0.7
books 0.5 0.5

Fig. 1. Classification and explanation with a sentiment lexicon

We first formalize the concept of lexicons and explore the state of the art
in the domain of lexicon-based classification. We then detail our contribution,
formalizing lexicon-based classification as a form of computational graph and
inducing optimal weights using a regularized objective function. We then detail
our evaluation protocol on two classification tasks: stance detection and sen-
timent classification. We perform an evaluation against standard lexicons and
baselines found in the literature and report that our approach significantly out-
performs standard text classification techniques. Finally, we analyze and discuss
our results, before exploring the next steps of our work.

2 Related Works

Despite its widespread use in real-world applications, text classification
heavily relies on black-box models offering little if any explanation on

500 J. Clos and N. Wiratunga

their predictions [21]. Lexicon-based classifiers overcome this limitation by con-
straining the classification to a simple model: each term/class pair is linked to a
score, and a new instance gets assigned a score for each class corresponding to
a sum of those scores weighted by the frequency of the corresponding term.

Those scores get weighted according to the frequency of that term in the
instance and then added together, and finally the class with the highest total
score for a given instance is chosen as the prediction. Such a classification model
offers the flexibility of transparency: each prediction can be explained trivially by
analyzing the terms that were present in the text, and any domain expert could
revise the model manually with a simple text editing software. This transparency
however comes at the cost of some classification accuracy, due to the simplistic
nature of its inference scheme.

2.1 Lexicon-Based Classification

Lexicons are linguistic tools for the automated analysis of text. Their most noto-
rious uses are classification and feature extraction [2,5]. They can take many
forms, the most common of which is a simple list of terms associated to a cer-
tain class of interest. Classification is done by counting the number of terms
belonging to each list in a given unlabeled instance, and returning the class
associated to the list with the most occurrences. Optionally, the terms can be
weighted according to their strength of association with a given class. Some lex-
icons also contain additional contextual information in order to help their users
build more complex models [17], but they all share the same architecture:

Definition 1 (formal classification lexicon). A classification lexicon Lex is
a tuple Lex = 〈L,A,D〉 where:

L : T × C �→ IR
A : IRn �→ IR
D : IRn �→ IR

For a given dictionary of terms T and set of classes of interest C, L is a map-
ping function that assigns an unbounded value to each pair (t, c) where term
t ∈ T and class c ∈ C. The function A is an aggregation function that accu-
mulates scores and returns one value, and D is a decision function that selects
and returns a single one of these aggregated values. Concretely, the mapping
determines an evidence score for each term using a look-up list (the lexicon),
propagates it to the aggregation function which aggregates the evidence into
one cumulative score per class. Finally, the decision function evaluates each
score to select the one that is the most likely. Figure 1 provides an example of
the classification process.

We therefore define a core challenge in lexicon-based classification: the lexicon
induction problem. The next section reviews techniques traditionally used to
solve the lexicon induction problem.

Lexicon Induction for Interpretable Classification 501

Definition 2 (lexicon induction problem). The lexicon induction prob-
lem is the estimation, given aggregation function A and decision function D, of
the optimal function L so that the resulting lexicon Lex = 〈L,A,D〉 minimizes
its classification errors on unseen data.

2.2 Lexicon Induction Techniques

Research in lexicon induction outlines multiple families of techniques that can
be used to produce a computational lexicon. Those techniques are either built
on an extensive lexical resource such as an ontology, or on an estimation of
strength of association between each term and a class in a reference corpus.
Research has shown that merging multiple lexicons produces a reliable feature
extractor to augment an existing classifier [27], but using those lexicons for direct
classification was not explored.

Traditional hand-crafted lexicons (THCL). Due to the computational cost
of building a lexicon from text, early lexicons were hand-crafted by domain
experts [24] and while higher performance in automated classification tasks has
been shown using modern techniques, there still exist handcrafted lexicons in
use to this day such as the Linguistic Inquiry and Word Count lexicon [20].
The strengths of these approaches are that they generalize well and are highly
interpretable due to their human (and not algorithmic) origin. Conversely their
weakness are that they tend to be small due to the human labor involved in gen-
erating them, and less effective than other methods due to their focus on human
interpretability. However they can provide a commonsense knowledge back-up
in hybrid lexicons [16] with some degree of success.

Ontology-based lexicons (OBL). OBL learning techniques use a few human-
provided seed words for which the class is known, and leverage some external
relationship (typically synonymy, antonymy and hypernymy) in a semantic graph
such as WordNet [15] to propagate class values along that graph [9]. Because
this family of techniques is extremely foreign to the one we are proposing, we do
not evaluate against it and only refer to it for the sake of exhaustiveness.

Corpus statistic-based lexicons (CSBL). CSBL learning techniques use a labeled
corpus of interest in order to learn a domain-specific lexicon. The two main sta-
tistics used for this purpose are the conditional probability (Eq. 1) of observing a
term given a class, and the pointwise mutual information (PMI, Eq. 2) between
the observation of a term and the observation of a class. These approaches are
flawed in that they can overemphasize spurious correlations between terms and
classes. For example, if a non-class specific term such as “Monday” accidentally
co-occurs too often within one class, it will be misconstrued as being indica-
tive of that class, and the lexicon will overfit. Bandhakavi et al. [1] describe a
method for building conditional probability-based lexicons and Turney [25] an
approach using PMI and an external search engine to compute lexicon scores.

502 J. Clos and N. Wiratunga

Other works [6] have shown some improvement using the normalized PMI mea-
sure (NPMI, Eq. 3) on a stance classification task.

P (t; c) =
p(t|c)

∑|C|
i=0 p(t|ci)

(1)

PMI(t; c) =
log(p(t; c))
p(t)p(c)

(2) NPMI(t; c) =
log(p(t;c))
p(t)p(c)

− log [p(t; c)]
(3)

3 Lexicon Induction by Backpropagation

CSBL learning techniques traditionally use point estimates of some statistical
values on a corpus. Assuming Fn×1 is a n × 1 matrix containing the frequencies
of each of the n terms in instance x and W c×n is a c × n matrix indexed by a
class c and containing an association score for each term-class pair, we define
the classification step of a lexicon in the following way:

Prediction(x) = ArgMaxc (Wc · F) (4)

We can observe that a standard lexicon is a computational graph, i. e., a
composition of functions, as shown in Fig. 2 illustrating the network topology
of a binary classification lexicon. This allows us to use gradient-based learning
techniques such as backpropagation in order to solve the lexicon induction prob-
lem. The details of the network topology and the training protocol are explained
in the following sections.

3.1 The Lexicon Network Topology

The lexicon network topology corresponds to a shallow network with linear units
(the lexicon layer), where one regressor is trained per class and the output of each
regressor (the aggregation layer in Fig. 2) is fed into a SoftMax normalization
layer (the decision layer in Fig. 2) so as to produce a probability distribution as
a final output, which is necessary to backpropagate the error gradient to find
the optimal lexicon weights. In this section we review each layer of the neural
lexicon and their function.

The vocabulary input layer. The input layer feeds term frequencies into the
network. The output of this layer is a n × 1 matrix F (see Eq. 4) where n is
the number of terms in the lexicon. The inputs can be logarithmically scaled to
smooth out the differences in input length using the ScaledFrequency function
where RawFrequency corresponds to the number of times a term has appeared
in the current input. More complex scaling functions are typically applied in text
classification.

ScaledFrequency(t) = Log(1 + RawFrequency(t)) (5)

Lexicon Induction for Interpretable Classification 503

Fig. 2. The LexicNet network topology

The lexicon layer. The lexicon layer maps a term to its respective class-
dependent scores. This layer is represented by a c × n matrix W (see Eq. 4)
where n is the number of terms in the lexicon and c the number of classes.

The aggregation layer. The aggregation layer adds up evidence towards a class
from a list of units in the previous layer by performing an inner product between
n × 1 matrix F and c × n matrix W . The output of this layer is a 1 × c row vector
O containing the aggregated scores for each of the classes.

The decision layer. The decision layer transforms the row vector O into a prob-
ability distribution using the SoftMax function [3] and returns it as the output
of the network. At testing time, the decision layer returns the ArgMax of the
probability distribution in the output in order to compute the accuracy of the
current model. At training time, it returns only the probability distribution since
the ArgMax function is not differentiable, which is a required feature for the
backpropagation algorithm.

3.2 Lexicon Network Training

We train the LexicNet network using an Elastic Net-regularized average cross-
entropy error function. In this section we detail our training procedure and cost
function.

504 J. Clos and N. Wiratunga

Cost Function and Regularization. The backpropagation algorithm relies on
reverse-mode differentiation in order to train the network in a computationally
efficient way, by updating the weights of the units based on the error gradient
with respect to those weights. We transform the label of each instance into a
probability distribution vector of length n where Yi = 1 for the relevant class
and Yi = 0 otherwise in order to use the average cross-entropy cost function
(function E detailed in Eq. 6).

E(Y, Ŷ) = − 1
m

·
m∑

i=1

n∑

j=1

(
Yi,j × log(Ŷi,j) + (1 − Yi,j) × log(1 − Ŷi,j)

)
(6)

Given a set of predictions Ŷ and their corresponding ground truth labels Y ,
the average cross-entropy function iterates over each pair (y ∈ Y ; ŷ ∈ Ŷ) where
both y and ŷ are probability distributions over n classes and computes their
cross-entropy, which is then averaged over the m instances. However, optimizing
over a direct function of the error with a large amount of free parameters (number
of classes × number of lexicon entries) will lead to overfitting on the training data
and poor performance on the test data, which indicates the need to regularize
our training process. To counter that effect a regularization term is added to the
optimization process using Elastic Net regularization [30] which has been shown
to work on neural networks architectures [13].

The cost function J resulting is shown in Eq. 7.

J(θ,X, Y) = E(Y, h(X)) + λ ∗
⎛

⎝α ∗
m∑

j=0

|wj | + (1 − α) ∗
√
√
√
√

m∑

j=0

w2
j

⎞

⎠ (7)

Here we can observe the presence of two different regularization parameters:
λ corresponds to a regularization weight, which modulates the importance that
we are putting on obtaining a generalizable lexicon against having a low error in
the training set and is selected empirically, α corresponds to the elastic weight
which weights the importance put on minimizing respectively the L1−norm or
the L2−norm of the lexicon weights, wi corresponds to the weight of unit i in
the lexicon layer.

Optimization. We train our network using Backpropagation and the full batch
Gradient Descent algorithm with Nesterov momentum [18] as described in Eq. 8,
where μ is the velocity scaling parameter and γ is the learning rate. Nesterov
momentum works by updating each weight in two steps: firstly using a scaled
version of their previous update (conditioned by a fixed velocity parameter),
followed by a course correction step using the error gradient after the first update,
mimicking the effect of momentum in physical objects.

wi ← wi − μ × ui

ui ← ∂J

∂wi

wi ← wi − γ × ui

(8)

Lexicon Induction for Interpretable Classification 505

4 Experiments

We evaluated our approach using a 10-fold cross-validation [23] on multiple
tasks. We used standard TF-IDF term weighting [22] for the supervised clas-
sifiers because of it is shown to be competitive with more complex weighting
methods for text classification where there is little to no term filtering [29]. We
measured the performance of our algorithm against standard supervised classi-
fier baselines and lexicon induction techniques using the accuracy performance
metric (percentage of test instances correctly classified). The rest of this section
details the datasets and baseline algorithms used in our experiments.

4.1 Datasets

We performed our evaluation on two tasks, containing a total of 4 datasets for
stance classification and sentiment analysis. Class statistics for each dataset can
be found in Table 1. We describe the tasks and datasets associated in the rest of
this section:

– Stance detection is the study of local stance of a document with respect
to a topic or another stance. For example, if the topic of discussion is “death
penalty” and a document d1 is for the death penalty, then a document d2
that is against the death penalty is said to be in disagreement with docu-
ment d1, while a document d3 that is also for the death penalty is said to
be in agreement with document d1. Stance classification is the classification
of unseen documents with respect to a topic or an existing stance. In this
work, we consider a reduced version of the stance classification task with an
unobserved topic, which means that the classifiers do not have any contextual
information.

• The IACdataset is a subset of the Internet Argument Corpus [26] con-
taining forum comments crawled from 4forums1 on different topics: e. g.,
politics, . . . and labeled on a scale from −5 to 5. A subset of comments
that ensured disjoint class membership (with an average score far from 0)
and containing more than 3 words was binned into 2 classes (agreement
and disagreement) and used for our experiments.

• TheCDdataset is a dataset collected from the CreateDebate forum2

dedicated to social argumentation on political and religious topics and
labeled using 2 classes (agreement and disagreement).

– Sentiment classification is the study of the sentiment (positive or negative)
contained within a piece of text. While many datasets propose finer-grained
sentiment classes (positive, negative, and neutral or numerical gradation of
sentiment) we chose to use a binary sentiment classification task as the object
of our study.

1 http://www.4forums.com.
2 http://www.createdebate.com.

http://www.4forums.com
http://www.createdebate.com

506 J. Clos and N. Wiratunga

Table 1. Class statistics of datasets IAC, CD, AYI and AMZ.

Dataset

Stance Sentiment

IAC CD AYI AMZ

Number of instances 3,910 4,902 3,000 8,000

Frequency of the agreement/positive class 1,955 2,912 1,500 4,000

Frequency of the disagreement/negative class 1,955 1,989 1,500 4,000

Minimum instance length (in words) 10 10 43 10

Maximum instance length (in words) 3245 6,685 12,220 79

Average instance length (in words) 68.41 74.10 588.84 13.55

• TheAYI dataset was collected from Amazon3, Yelp4 and IMDB5 and
was built from individual sentences from product, location and movie
reviews (respectively), labeled with a binary positive/negative judgment.

• TheAMZdataset was collected from Amazon user reviews and labeled
with a binary positive/negative judgment. The dataset is provided with
preprocessed unigrams and bigrams. Only the unigrams are used for our
experiments, so as to be more similar to the other tasks and datasets.

4.2 Baselines

We used two families of baselines as comparison points with our approach:

Lexicons: Two lexicons used as a baseline are the CPBLex and the
PMILex, which are standard methods for building lexicons for other pur-
poses, such as sentiment lexicons [12]. Section 2.2 on corpus-based lexicons
details their implementation. These algorithms were provided tf-idf normal-
ized raw frequencies, which has been shown to be a competitive term weight-
ing scheme for text classification [14];
Standard classifiers: SVM (with a RBF kernel), which has been shown
to perform well in stance detection tasks by Yin et al. [28] and is a regu-
lar top performer in general classification tasks [10], and NaiveBayes and
DecisionTree which are two popular baselines for text classification. Para-
meters for the classifiers were taken from the default recommendations of the
scikit-learn6 [19] library. Tf-idf was also used here due to the disparity in
document length shown in Table 1.

3 http://www.amazon.com.
4 http://www.yelp.com.
5 http://www.imdb.com.
6 http://scikit-learn.org.

http://www.amazon.com
http://www.yelp.com
http://www.imdb.com
http://scikit-learn.org

Lexicon Induction for Interpretable Classification 507

5 Results and Discussion

Table 2 shows that LexicNet outperforms all the baselines by a statistically
significant margin (on a one-tailed paired T-test, with p < 0.05) except for the
AYI dataset where decision trees are the top performing algorithm and the
AMZ dataset where the performance improvement comes close to statistical
significance but does not reach it. The parameter values for LexicNet were
determined empirically on a hold-out dataset, leading to the choice of a lexicon
size of 400 words (the 400 most frequent words in the corpus) and a regularization
coefficient (λ) of 0.5, an elastic net weight (α) of 0.4 and a momentum velocity
coefficient of 0.7.

Table 2. Experimental results

Method Accuracy

Stance Sentiment

IAC CD AYI AMZ

Baseline lexicons CPBLex 0.524 0.441 0.528 0.519

PMILex 0.557 0.529 0.571 0.554

Baseline classifiers NaiveBayes 0.536 0.474 0.665 0.637

SVM 0.589 0.594 0.689 0.671

DecisionTree 0.582 0.573 0.742 0.707

Approach LexicNet 0.647 0.642 0.729 0.718

We note from manual examination of the results on stance classification tasks
that a large proportion of the classification errors made by LexicNet was made
on documents where stance was heavily implied and there is no term used that
is heavily indicative of the class, e. g., “Thus, an important point is raised”
(agreement). While algorithms like SVM manage to draw on their complexity to
target higher-order (and sometimes even coincidental) relationships between sets
of words and classes, LexicNet lacks the expressiveness to do so. On sentiment
analysis tasks, we note that a likely explanation of the poor performance on the
AYI dataset is due to the multiple sources of data: Amazon, Yelp and IMDB.
Such diversity would tend to cause a large standard deviation of input length,
something that a lexicon-based classifier is more sensitive to than a decision tree.
We conduct another experiment in order to confirm this hypothesis, and display
the results in Table 3.

We can see from Table 3 that when separating the AYI dataset in the three
domains a performance improvement can be observed in LexicNet. However the
improvement does not completely bridge the gap with DecisionTree, meaning
that other factors at play influence the algorithm and will be studied in further
work.

508 J. Clos and N. Wiratunga

Table 3. Experimental results after separating domains in the AYI dataset

Method Accuracy

Amazon Yelp IMDB

Baseline lexicons CPBLex 0.545 0.511 0.562

PMILex 0.557 0.593 0.612

Baseline classifiers NaiveBayes 0.691 0.704 0.728

SVM 0.677 0.692 0.686

DecisionTree 0.755 0.704 0.740

Approach LexicNet 0.738 0.691 0.742

6 Conclusion and Future Work

In this work we showed the viability of using elastic net-regularized backpropa-
gation to learn effective lexicon weights, producing a lexicon that is competitive
with standard classifiers and significantly outperforms baseline lexicon learning
techniques in several datasets.

However we identified two major flaws in the LexicNet which will be subject
to future work: (1) its lack of expressiveness to capture higher-order relationships
between sets of terms and classes, as well as (2) its deficiencies when dealing with
inputs of varying length, due to the way it models the classification process as a
weighted sum of term-class association strength, which means that a term that
only appears in very long instances will be assigned a lower weight than one
appearing only in short texts.

Our future work will focus on improving the expressiveness of LexicNet to
counter those issues while keeping it in the form of a human-readable lexicon.
Our objective is to do so by incorporating lexical context such as modifier words
(e. g., adverbs) and topical context (words with multiple meanings with different
class values) in the network topology, thus improving accuracy without hurting
interpretability.

References

1. Bandhakavi, A., Wiratunga, N., Deepak, P., Massie, S.: Generating a word-emotion
lexicon from# emotional tweets. In: Proceedings of the 3rd Joint Conference on
Lexical and Computational Semantics (*SEM 2014) (2014)

2. Bandhakavi, A., Wiratunga, N., Deepak, P., Massie, S.: Lexicon based feature
extraction for emotion text classification. Pattern Recogn. Lett. 93, 133–143 (2016)

3. Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)
4. Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search

results. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 145–152. ACM (2000)

5. Clos, J., Bandhakavi, A., Wiratunga, N., Cabanac, G.: Predicting emotional reaction
in social networks. In: Jose, J.M., Hauff, C., Altıngovde, I.S., Song, D., Albakour, D.,
Watt, S., Tait, J. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 527–533. Springer, Cham
(2017). doi:10.1007/978-3-319-56608-5 44

http://dx.doi.org/10.1007/978-3-319-56608-5_44

Lexicon Induction for Interpretable Classification 509

6. Clos, J., Wiratunga, N., Massie, S., Cabanac, G.: Shallow techniques for argument
mining. In: ECA’: Proceedings of the ECA, vol. 63, p. 2 (2016)

7. Diederich, J., Kindermann, J., Leopold, E., Paass, G.: Authorship attribution with
support vector machines. Appl. Intell. 19(1), 109–123 (2003)

8. Drucker, H., Wu, D., Vapnik, V.N.: Support vector machines for spam categoriza-
tion. IEEE Trans. Neural Netw. 10(5), 1048–1054 (1999)

9. Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for
opinion mining. In: Proceedings of LREC, vol. 6, pp. 417–422. Citeseer (2006)

10. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems. J. Mach. Learn. Res. 15(1),
3133–3181 (2014)

11. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector
machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

12. Jurafsky, D., Martin, J.H.: Lexicons for sentiment extraction, chap. 18. Pearson
(2016)

13. Kang, G., Li, J., Tao, D.: Shakeout: a new regularized deep neural network train-
ing scheme. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, pp. 1751–1757. AAAI Press (2016)

14. Lan, M., Tan, C.L., Low, H.B., Sung, S.Y.: A comprehensive comparative study on
term weighting schemes for text categorization with support vector machines. In:
Special Interest Tracks and Posters of the 14th International Conference on World
Wide Web, pp. 1032–1033. ACM (2005)

15. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

16. Muhammad, A., Wiratunga, N., Lothian, R.: A hybrid sentiment lexicon for social
media mining. In: IEEE 26th International Conference on Tools with AI (ICTAI),
pp. 461–468 (2014)

17. Muhammad, A., Wiratunga, N., Lothian, R.: Contextual sentiment analysis for
social media genres. Knowl.-Based Syst. 108, 92–101 (2016)

18. Nesterov, Y.: Gradient methods for minimizing composite objective function (2007)
19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

20. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count:
LIWC 2001. Mahway: Lawrence Erlbaum Associates 71, 2001 (2001)

21. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM
(2016)

22. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

23. Sammut, C., Webb, G.I. (eds.): Cross-Validation, pp. 249–249. Springer, Boston
(2010)

24. Stone, P.J., Dunphy, D.C., Smith, M.S.: The General Inquirer: A Computer App-
roach to Content Analysis. MIT press, Cambridge (1966)

25. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In: Proceedings of the 40th Annual Meeting on
ACL. ACL (2002)

26. Walker, M.A., Tree, J.E.F., Anand, P., Abbott, R., King, J.: A corpus for research
on deliberation and debate. In: LREC, pp. 812–817 (2012)

510 J. Clos and N. Wiratunga

27. Wang, L., Cardie, C.: Improving agreement and disagreement identification in
online discussions with a socially-tuned sentiment lexicon. In: ACL 2014, vol. 97
(2014)

28. Yin, J., Thomas, P., Narang, N., Paris, C.: Unifying local and global agreement and
disagreement classification in online debates. In: Proceedings of the 3rd Workshop
in Computational Approaches to Subjectivity and Sentiment Analysis, pp. 61–69.
ACL (2012)

29. Zhang, W., Yoshida, T., Tang, X.: A comparative study of TF* IDF, lSI and
multi-words for text classification. Expert Syst. Appl. 38(3), 2758–2765 (2011)

30. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

