
High-Pass Text Filtering for Citation Matching

Yannis Foufoulas1(B), Lefteris Stamatogiannakis1, Harry Dimitropoulos1,
and Yannis Ioannidis1,2

1 Department of Informatics and Telecom, University of Athens, Athens, Greece
{johnfouf,estama,harryd,yannis}@di.uoa.gr
2 “Athena” Research Center, Maroussi, Greece

Abstract. Open publications are increasing at such a rapid pace that it
is almost impossible for researchers to keep up with them. Even in terms
of computational complexity, the data are becoming bigger and bigger,
so there is a great need to provide new and faster algorithms for min-
ing scientific articles. One such important mining task is finding citation
links between the literature, which can assist researchers looking into the
literature, finding dependencies between publications, and so on. In this
paper, we introduce a greedy citation matching algorithm, that works
with plain unstructured text and mines citations from papers regard-
less of the format in which the citations are presented. This research is
supported by the European Commission under projects OpenAIRE2020
(643410) and Human Brain Project (720270).

Keywords: Citation matching · High-pass filtering · Reference
extraction

1 Introduction

Scholarly communication is currently at a new phase where researcher’s pub-
lished results are more optimally shared, discovered, validated and re-used when
they are exposed in their full context. This means that they are best accom-
panied by all the relative information that provides an insight and capacity to
translate the research process and activities that have taken place. Such infor-
mation may be citations. If we are able to provide links between the literature,
then this can be used for multiple purposes including literature search, finding
similar publications, analysis of research trends, etc.

Most of the time, citation extraction and parsing is not enough; there is also
a need to match the citations to metadata databases in order to enrich them
with more useful information, such as the complete author list, scientific areas,
journal information and in some cases abstracts or even fulltexts. Such info is
not always included in the citation text, while abstracts and fulltexts are never
included. Even when some of this exists, there is no algorithm that assures 100%
recall rate in the parsing and extraction phase.

Due to these reasons, the matching of the citations with a metadata database is
an important task. Currently, a user is able to download publications’ metadata
c© Springer International Publishing AG 2017
J. Kamps et al. (Eds.): TPDL 2017, LNCS 10450, pp. 355–366, 2017.
DOI: 10.1007/978-3-319-67008-9 28



356 Y. Foufoulas et al.

from various sources including repositories and other systems which offer APIs
(e.g. PubMed API1, ArXiv API2, CrossRef Search API3, OpenAIRE4 API)

Figure 1 presents the most common workaround to extract citations links.
The first step is citation extraction and parsing. Citation extraction regards the
extraction of a citation and its metadata (title, author names, journals, dates).

Fig. 1. Citation extraction, parsing and matching workflow

Titles, author names and other metadata are typed in many different ways
and orders. An example of two citations that refer to the same paper, yet are
cited quite differently, follows:

Friston, K. J., Holmes, A. P.,Worsley, K. J., Poline, J. P., Frith, C. D., and Frackowiak,

R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear

approach. Human Brain Mapping 2:189–210.

[Friston et al. 94] Statistical parametric maps in functional imaging: a general linear

approach, Karl J Friston, Andrew P Holmes, Keith J Worsley, J-P Poline, Chris D

Frith, Richard SJ Frackowiak. Human Brain Mapping Vol. 2(4), pp. 189–210.

For this reason, citation parsing is a difficult task and has already been
addressed many times by the community. Mainstream citation extraction
approaches use heuristics [5], machine learning techniques [6,7], knowledge-based
approaches [2,4], and other methods to overcome this issue. However, due to the
different ways that a document is formatted - and the different languages - this
process may be time consuming. In the Related Work section, we will present
more thoroughly the existing techniques.

The second step is citation matching. This phase regards the enrichment of
the extracted citation. The title, the authors and the other extracted fields are
matched against the repository of interest. Since the metadata of the repository
are also structured, this matching seems like a simple string match. However,
there are also several problems to tackle, like the different ways that author
names (or other metadata) are written, title misspellings, publications with the
same title and other issues.

In this work, we match the publications’ plain text with the repository meta-
data and produce directly the enriched matched citations. We are eliminating
1 https://europepmc.org/.
2 http://arxiv.org/.
3 http://www.crossref.org/.
4 https://www.openaire.eu/.

https://europepmc.org/
http://arxiv.org/
http://www.crossref.org/
https://www.openaire.eu/


High-Pass Text Filtering for Citation Matching 357

the citation parsing step, replacing it with a fast text filtering step whose pur-
pose it to keep only the sections in the text which contain references. Figure 2
presents the workaround of the proposed method.

Fig. 2. Citation matching workflow

The first step uses heuristics and high pass text filtering to extract the whole
reference section from the text and any other section that may contain references.

The next step is the final citation matching step. The structured repository
metadata are matched against the references sections from the text using data-
base and pattern matching techniques.

Our technique is able to extract references from anywhere in the text, includ-
ing footnotes, and not only from the references section. Moreover, since the full-
text is not parsed to produce a structured citations list, the algorithm does not
depend on the references or the publication’s format. Finally, as the experiments
have shown, the presented method is able to provide citation links between a
corpus consisting of publications’ plain text and a specific repository up to more
than an order of magnitude faster than the techniques that parse the citations
before the matching.

The rest of the paper is organized as follows. In Sect. 2, we present the related
work. In Sect. 3, we lay out our reference section extraction algorithm and in
Sect. 4, we introduce our citation matching algorithm, and the implementation
details. In Sect. 6, some experimental results are shown.

2 Related Work

While dealing with the citation matching problem, the first issue we need to
address is that of data representation. The data can be either structured (e.g.
XML) or unstructured (e.g. plain text). E.g., when a publication is in XML for-
mat it often has structured references, titles and authors, which can be easily
matched against an existing/given database of publications. On the other hand,
when provided with unstructured plain text it is important to consider that cita-
tions are presented in different formats according to each repository/publisher,
making it difficult to produce an algorithm that is able to extract references
from all possible repository formats.

To solve this problem: CITESEER [5] identifies the reference section and
then uses heuristics and machine learning techniques to find title, author, year
of publication, page numbers, and citation tags; CERMINE [12] uses some geo-
metrical, lexical values, the format and some heuristics like the uppercase etc.,



358 Y. Foufoulas et al.

to extract the references section and machine learning techniques to find refer-
ence strings; GROBID [8] and ParsCit [3] use Conditional Random Fields [9].
GROBID and CERMINE work with PDF files, whereas ParsCit works also with
plain text.

All these methods target the problem of extracting and parsing citations from
a paper. Having completed this step, if someone needs to match the citations
against a metadata database, he has to match the extracted titles, authors and
the other metadata. While this task seems simpler, it is also difficult since it
includes title and metadata matching. Title matching is difficult due to possible
typos. Moreover, when a title matches with another, it is a good hint that we
are talking about the same paper, but this is not always the case. Matching
metadata including authors, journal information etc. is very difficult due to the
different ways this information is presented. The existing tools target mainly
the extraction of structured citation lists, without matching them to metadata
databases.

3 Reference Sections Extraction Algorithm

As already mentioned, the main challenge is the different ways that citations are
presented. Thus in order to be able to locate them in a publication it is crucial to
use global heuristics. Ideally, we should find a globally common characteristic.
Such a characteristic is the appearance of years or URLs in the text: in all
publications, the references sections are dense in dates and URLs. Using this
feature, we split each publication text on its newlines, remove blank and small
lines that consist of less than ten characters, and we mark all lines where at
least one year (4 digit numbers, between 1900 and 20xx) or URL appears in
their context, producing a list of marked or unmarked items. By considering
this list as a signal in time, we can then run a high-pass filter process, keeping
regions with higher than average density of dates or URLs. In this way, we
are able to extract not only the references section but also text that contains
citations anywhere in the body of the publication.

An illustration of how the reference extraction algorithm works can be seen
in Fig. 3. In the first step, the lines containing URLs or dates are marked. The
next step calculates the density of such patterns per window. In this example,
a window consists of 5 lines, so the lines from 4th to 8th constitute a window.
The density for the lines of this window is 0.2, since a year appears in one line
(1/5). In the final step we mark the lines with density higher than average. The
unmarked lines are filtered out, and the sections from the text which may contain
references are extracted5.

This step’s main goal is to reduce, as fast as possible, the amount of text
that will be processed without missing any valid citations. We do not care about
false positives as these will be eliminated during the next steps.
5 Note that this is an unreal example where the references section covers almost half
of the complete text. When the main body is larger, the average density of dates
and URLs is lower and possible references in footnotes are not filtered out.



High-Pass Text Filtering for Citation Matching 359

Fig. 3. Reference extraction algorithm with window size = 5

4 Title and Metadata Matching

Citation matching is the next step of the presented algorithm. There are several
problems that we have to address. First, matching titles with plain text can
be very time-consuming, because title lengths vary. Moreover, the same title
does not always refer to the same paper. We also need to match with metadata.
Citations may be written in different formats, the order of publication metadata
varies, author names can be written in different ways (John Smith or J. Smith).
Our algorithm solves the title and metadata matching problem in the following
steps:

– Preprocessing phase (possibly offline)
• Normalization of structured metadata
• Creation of characteristic inverted index

– Matching phase
• Title matching
• Validation of results using metadata matching

4.1 Preprocessing

Normalization of Metadata. At first, we normalize the titles and other pub-
lication metadata by:

– Reducing spaces between words
– Replacing punctuation marks with underscores
– Converting text to lower case

For example if we have the title:
“The PageRank citation ranking: Bringing order to the web”



360 Y. Foufoulas et al.

we transform it as follows:
“the pagerank citation ranking bringing order to the web”

The preprocessing phase addresses misspelling issues related to number of
spaces, punctuation and case sensitivity. Exactly the same preprocessing proce-
dure has to be applied to the publications’ fulltext before the final matching.

Characteristic Inverted Index. As mentioned before, title matching is a very
demanding and time-consuming task. We produce an inverted index based on
all trigrams that appear in the titles. With the term trigram, we refer to any
sequence of three words in the titles. We execute a JOIN operator between the
text and title trigrams. When a trigram from the text matches with a trigram
from a title, we examine if the whole title matches in the text. If yes, we have
a matched title, if not we have a title miss. Using trigrams instead of bigrams
or single words, we reduce possible title misses. On the other hand, we do not
use larger N-grams, because many titles consist of just three terms. A typical
trigram-based inverted index for the above example title is shown in Table 1.

Table 1. Trigram-based inverted index

Trigram Title id

The pagerank citation 1

Pagerank citation ranking 1

Citation ranking bringing 1

Ranking bringing order 1

Bringing order to 1

Order to the 1

To the web 1

Obviously, since this index contains all trigrams appearing in all titles, it is
both memory and computationally expensive to be used in a relational JOIN
operation. Moreover, common trigrams that may co-exist in many titles could
lead to a huge number of matching trigrams, thus to a huge number of title
misses.

A way to reduce the size of the index and the title misses is to only use iden-
tifying trigrams in the index. An identifying trigram, is a trigram that appears
in only one title. So, an ideal inverted index would only contain one identifying
trigram per title. Because the ideal inverted index is unattainable most of the
time, we try to approximate it using a simple heuristic iterative method. First we
build the full trigram-based inverted index that contains all trigrams appearing
in all titles. From this index we “pick” the trigrams and titles that only appear
once, and remove them from the full inverted index. We repeat this procedure
iteratively, increasing the threshold of trigram appearance count, until we have



High-Pass Text Filtering for Citation Matching 361

fully covered the set of titles of the full index. This produces a characteristic
inverted index containing, for each title, a trigram that appears in as few other
titles as possible.

The characteristic inverted index is used in a relational EQUI-JOIN between
the trigrams appearing in the text and the index trigrams. Here follows an exam-
ple of the described algorithm. Let A,B,C,D,E,F,G,H be trigrams and consider
the example shown in Fig. 4.

Fig. 4. Characteristic inverted index creation

The goal is to select the minimum subset of trigrams that covers the full set
of titles, such that selected trigrams have minimum number of assigned titles.
Figure 4 presents the steps to produce the characteristic inverted index. In the
first iteration, we select D and H which appear uniquely in titles 1 and 2, and
we remove these trigrams and titles from the index. In the second iteration,
we are able to identify titles 3 and 4 with trigrams E,G and F. We may use E or
G to identify title 3. In this situation, we select the longer trigram according to
the number of characters it contains. After removing these trigrams (F,G) and
titles (3,4) from the index, it turns out that no titles remain, so our characteristic
inverted index is ready.

When the inverted index is complete, a query runs which scrolls a window
over the publication’s fulltext, extracts all the trigrams and matches them to our
inverted index. If a match happens then the full title from the inverted index is
matched with the context of the trigram in the publication’s text. This way we
ensure achieving a high recall rate since all trigrams from the text are joined.

4.2 Matching

Title Matching. A query extracts the references sections from the text, scrolls
a window over the extracted text, extracts all the trigrams and matches them to



362 Y. Foufoulas et al.

the characteristic inverted index. Experimentally, the size of the window is set
by default to 60 whitespace separated strings, in order to include at least the
title and the metadata. If a match happens then the full title from the inverted
index is matched with the corresponding window of text.

Validation of the Results. After matching a title we have to deal with the
difficult problem of disambiguating and filtering out false matches. We use the
following techniques:

– We create a bag of words that contains author names, publication dates,
publishers, journal names for each metadata record. We pattern match this
bag of words to our window of text. Each category weighs differently than
the others. So, the author matches weigh more than the other metadata, the
author surnames weigh more than their first names, the journal names and
the publishers more than the publication dates.

– Each match also weighs differently according to its distance (in number of
words with more than two characters) from the title. If a word matches, the
confidence value is increased by its weight and inversely proportional to its
distance from the title in words.

– The length of the title (number of words) is also considered, since a larger
matched title is more possibly a true match.

The following equation shows how the confidence value is calculated:

Conf =
10∗F (AS)+3∗F (AF )+3∗F (PY )+5∗F (JN)

MAXVAL + L(t)
L(C)

2
, (1)

AS, AF, PY, JN are author surnames, first names, publication years and
journal names respectively. Function F sums the distance weights for all the
occurrences of the input pattern. If a pattern is matched 3 words away from the
title, its distance weight is 1/3. L(t) is the length of the matched title, while
L(C) is the length of the window. MAXVAL is the maximum value, if all the
words in the window are matched with author surnames. It is used so that
the final confidence value is between 0 and 1. After experimenting with various
datasets, we have defined 0.1 as an appropriate threshold. If this value is above
the threshold, then the citation is marked as true positive, else as false.

The fallback of this technique is that the context used for calculating confi-
dence value has stable length for speed purposes, so it may contain strings from
previous or next citations. Nevertheless, manual curation of experimental results
indicates that less than 1% of matches are false positives because of metadata
that match with an adjacent reference.

4.3 Implementation Details

Our algorithm is implemented on top of madIS [11], a powerful extension of a
relational DBMS with user-defined data processing functionality. MadIS is built
on top of the SQLite API6.
6 https://www.sqlite.org/.

https://www.sqlite.org/


High-Pass Text Filtering for Citation Matching 363

MadIS allows the creation of user-defined functions (UDFs) in Python and
it uses them in the same way as its native SQL functions. Both Python and
SQLite are executed in the same process, greatly reducing the communication
cost between them. This is a critical architectural characteristic and has a posi-
tive impact on joint performance.

MadIS is highly scalable, easily handling 10 s of Gigabytes of data on a single
machine. This benefit transparently carries over to distributed systems (e.g.,
Hadoop [10], Exareme [1]) which can use madIS in each node.

In madIS, queries are expressed in madQL: an SQL-based declarative lan-
guage extended with additional syntax and user-defined functions (UDFs). One
of the goals of madIS is to eliminate the effort of creating and using UDFs by
making them first-class citizens in the query language itself.

The expressiveness and the performance of madIS along with its scalability
features were compelling reasons for choosing it to implement our algorithm.
Our citation matching software is open source and hosted by Github.7

5 Experiments

We ran three experiments to evaluate the proposed method. In the first two
experiments, we test some important features of our method, whereas in the third
experiment we compare our method to GROBID and ParsCit. Our experiments
ran on an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz processor with a 500 GB
SSD disk and 16 GB RAM, running Ubuntu Server 14.04 LTS.

The aim of our first experiment was to prove the benefits of the reference
extraction algorithm. We ran the citation matching algorithm to the full publi-
cations’ text (without using the reference extraction algorithm) and compared
the results to those that are produced if the references are extracted. For this
experiment, we used 100 publications from both arXiv and PubMed reposito-
ries (50/50), matching citations with 9.6 millions publications from OpenAIRE.
ArXiv and PubMed were selected, as their deposited publications do not share
similar reference formats and cover many scientific areas including medicine,
physics, computer science and others. The results are shown in Table 2. The
precision and the recall rates are based on manual validation of the results.

In case 1, running citation matching on the fulltext, we find a total of 289
citations. The recall rate (97.40%) is high and notably the 5 citation misses are
all cases that the algorithm was able to match but are filtered out due to low
confidence value. In case 2, we only process 12.3% of the total text lines, so the
processing is about 8 times faster. Case 2, misses 12 more correct references that
were found by case 1. By increasing the window size from 5 to 7 in case 3, we
only increase by 0.3% the number of processed lines but we also find all the
references missed by case 2. Finally, it turns out that the use of the reference
extraction algorithm is very advantageous in terms of precision, since in case 1
the precision is very low (67.10%), whereas in cases 2 and 3 there are not any

7 https://github.com/madgik/recital.

https://github.com/madgik/recital


364 Y. Foufoulas et al.

Table 2. Evaluation of matched citations

Case 1. full pub text 2. ref extraction
window size = 5

3. ref extraction
window size = 7

High confidence matches 289 182 194

True citation misses 5 17 5

High confidence precision 67.10% 100% 100%

Recall 97.40% 91.50% 97.40%

% of total text lines 100% 12.30% 12.60%

false positives. However, while inspecting the false positives of case 1, it turned
out that the titles of the publications themselves that are placed on the top of
the PDF had matched. We can avoid this if we simply exclude the first lines
of the plaintexts in the pre-processing phase. Thus, the impact of the reference
extraction algorithm on the processing time is very important since the main
body of the algorithm is only applied on a small percentage of total text lines.

Our second experiment concerns the citation matching algorithm. We ran
our algorithm on about 450 K publications’ fulltexts retrieved from the ArXiv
repository. The purpose of our experiment was to find citation links to Ope-
nAIRE publications. The first step for doing this is building the characteristic
inverted index. OpenAIRE publication index, during the experiments, consisted
of 9,598,093 publications in which there were 8,168,090 distinct titles. While
creating the characteristic inverted index, we managed to extract identifying
trigrams for 7,430,948 titles whereas for the rest we increased the threshold of
trigram appearance count, until we covered the full set of titles. Then, we ran
the algorithm using the text references extraction algorithm with window size
set to 7. The results of our experiment are shown in Table 3.

Table 3. Citation matching in OpenAIRE

Publication
count

OpenAIRE
publication count

High confidence
Citation matches

High confidence
Precision

450.4K 9.6M 968,880 99%

In this experiment, after validating a sample of 200 citations, we found two
false positives. These two cases show one main disadvantage of our method.
Rarely, there are titles which are substrings of other titles. This is not a problem
when the other metadata differ, because the confidence value remains low. But
when the authors are also the same, then we may end up with false positives.
Consider the citations below:
Caire, Giuseppe, and Daniela Tuninetti. “The throughput of hybrid-ARQ protocols for

the Gaussian collision channel.” IEEE Transactions on Information Theory (2001).



High-Pass Text Filtering for Citation Matching 365

Caire, G., and D. Tuninetti. “ARQ protocols for the Gaussian collision channel.”

IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY. 2000.

These refer to two different publications with the same authors, where the
second publications’ title is a substring of the first.

Our last experiment, compares our method to GROBID and ParsCit. Both
these tools extract and parse citations from publications. GROBID processes
PDF files while ParsCit processes plain text. These tools extract structured
citations and the matching to a given list of publications’ metadata can be done
as a next step. Our algorithm (and ParsCit) works with plain text, so we had
first to convert the PDFs. We did it using the Unix util pdftotext without any
parameters. We compare the methods on a dataset consisting of 15K PDFs, and a
metadata database consisting of about 375 K publications from ACM8. GROBID
ran in multi-threaded mode (8 threads), while ParsCit and our method ran in
single-thread. Table 4 shows the execution times, and the matched citations.

Table 4. Comparison with GROBID and ParsCit

Method PDF convertion
time (minutes)

Preprocessing
(minutes)

Extraction
(minutes)

Matching
(minutes)

Matched
citations

GROBID - - 101 0.9 32595

ParsCit 11 - 720 0.9 31989

Proposed 11 1.9 0.5 2.2 39027

As can be seen, the proposed method is much more efficient in terms of
speed. The preprocessing time regards the normalization of the metadata and
the creation of the characteristic inverted index. The proposed method does not
extract stuctured citations, but only sections from the text that may contain
references. In this step, GROBID extracts 129252 structured citations with titles
while ParsCit extracts 125328. In the next step, the titles are matched against the
metadata database. Grobid produces 33206 title matches while ParsCit produces
32686. The presented numbers regard the citation matches where not only the
titles, but also metadata like publication year and author names have matched.

Our method matches the metadata database with the plain text and produces
39027 high confidence matched citations. All three methods extract in common
31899 matched citations. Our method matches 7089 citations more than GRO-
BID and 7105 citations more than ParsCit. The validation of a sample of 200
citations showed that 97% of them were valid and the rest were false alarms.
GROBID also extracts 657 citations that are not extracted using the proposed
method. These citations were missed mainly due to the PDF conversion. Com-
paring our method with ParsCit, where the same PDF conversion tool was used,
it seems that our method misses just 67 citations. This supports our claim that
our method achieves high recall rates when processing plain text.

8 http://dl.acm.org.

http://dl.acm.org


366 Y. Foufoulas et al.

6 Conclusions

Given a known database of publications’ metadata, we propose a fast and accu-
rate citation matching method from a corpus of publications to the metadata
database. Our method does not use citation extraction but citation matching.
This means that we do not extract external citations but we target extracting
citations within a given dataset. That is why we can avoid using time-consuming
machine learning techniques to extract full citation metadata from the publica-
tions’ fulltext. Hence, the algorithm achieves the same accuracies and faster
processing times regardless of the format of the publication’s fulltext and in
most cases even its language. Moreover, by matching every trigram in the full-
text, we ensure that our method achieves higher recall rates than methods that
extract citations’ metadata from fulltext before applying the match.

References

1. Chronis, Y., et al.: A relational approach to complex dataflows (MEDAL 2016)
(2016)

2. Cortez, E., da Silva, A.S., et al.: Flux-CiM: flexible unsupervised extraction of
citation metadata. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on
Digital Libraries, pp. 215–224. ACM (2007)

3. Councill, I.G., Giles, C.L., Kan, M.Y.: ParsCit: an open-source CRF reference
string parsing package. In: LREC 2008 (2008)

4. Day, M.Y., Tsai, T.H., et al.: A knowledge-based approach to citation extraction.
In: International Conference on Information Reuse and Integration. IEEE (2005)

5. Giles, C.L., et al.: Citeseer: An automatic citation indexing system. In: Proceedings
of the third ACM Conference on Digital Libraries, pp. 89–98. ACM (1998)

6. Han, H., et al.: Automatic document metadata extraction using support vector
machines. In: Joint Conference on Digital Libraries. IEEE (2003)

7. Lawrence, S., Giles, L.C., Bollacker, K.: Digital libraries and autonomous citation
indexing. Computer, 67–71 (1999)

8. Lopez, P.: GROBID: combining automatic bibliographic data recognition and term
extraction for scholarship publications. In: Agosti, M., Borbinha, J., Kapidakis, S.,
Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 473–474.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04346-8 62

9. Peng, F., McCallum, A.: Information extraction from research papers using con-
ditional random fields. Inf. Process. Manage. (2006)

10. Shvachko, K., et al.: The HADOOP distributed file system. In: 26th Symposium
on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE (2010)

11. Stamatogiannakis, L., et al.: madIS - extensible relational DB based on SQLite,
https://github.com/madgik/madis. Accessed 5 March 2017

12. Tkaczyk, D., et al.: CERMINE - automatic extraction of metadata and references
from scientific literature. In: 11th IAPR International Workshop on Document
Analysis Systems, pp. 217–221. IEEE (2014)

http://dx.doi.org/10.1007/978-3-642-04346-8_62
https://github.com/madgik/madis



