
Understanding the Influence
of Hyperparameters on Text Embeddings

for Text Classification Tasks

Nils Witt1(B) and Christin Seifert2(B)

1 ZBW-Leibniz Information Centre for Economics, Kiel, Germany
n.witt@zbw.eu

2 University of Passau, Passau, Germany
christin.seifert@uni-passau.de

Abstract. Many applications in the natural language processing
domain require the tuning of machine learning algorithms, which involves
adaptation of hyperparameters. We perform experiments by systemati-
cally varying hyperparameter settings of text embedding algorithms to
obtain insights about the influence and interrelation of hyperparameters
on the model performance on a text classification task using text embed-
ding features. For some parameters (e.g., size of the context window) we
could not find an influence on the accuracy while others (e.g., dimen-
sionality of the embeddings) strongly influence the results, but have a
range where the results are nearly optimal. These insights are beneficial
to researchers and practitioners in order to find sensible hyperparame-
ter configurations for research projects based on text embeddings. This
reduces the parameter search space and the amount of (manual and
automatic) optimization time.

Keywords: Document embeddings · Hyperparameter optimization ·
Natural language processing

1 Introduction

Many applications in the natural language processing domain require the tuning
of machine learning algorithms. Since there is no superior algorithm or model per
se [19], machine learning models have to be carefully chosen and tuned. This tun-
ing involves adaptation of learning parameters and model hyperparameters. A
common approach to hyperparameter tuning is manual search: algorithm devel-
opers select sensible parameter choices from their experience and then repeat-
edly evaluate the models and adapt parameters. While manual search is the
most time-consuming approach, it has the advantage that algorithm designers
get some insights into parameter influences. But since humans are unable to
reason in multi-dimensional spaces, they hardly achieve globally optimal results.
A brute-force approach is grid search, where all (exponential many) parameter
configurations from a pre-defined set are tested on a high-dimensional grid. For
c© Springer International Publishing AG 2017
J. Kamps et al. (Eds.): TPDL 2017, LNCS 10450, pp. 193–204, 2017.
DOI: 10.1007/978-3-319-67008-9 16



194 N. Witt and C. Seifert

cases where some parameters are less important than others random search [1]
has been shown to outperform grid search. Both, random search and grid search
are easy to implement, easily parallelizable and generally provide better results
than manual search [1]. The Gaussian Process Optimizaton (GPO) approach
aims to predict the next promising parameter configuration based on the pre-
viously observed performance w.r.t. a loss function and therefore searches the
parameter space efficiently [18]. Despite its superior performance, the disadvan-
tages of GPO is that another set of hyperparameters must be tuned (e.g., the
choice of the acquisition function and covariance functions) and less insight about
the parameter influence to a machine learning model is generated.

As in every machine learning problem, the performance of text classification
applications strongly depends on the representation of the features. The most
common representation is the bag of words representation in the vector-space
model for texts [11]. More recently, distributed representations have been pro-
posed, most prominently, word2vec [12] and GloVe [14] for representing terms
and doc2vec for representing documents [9]. Text embedding-based techniques
have outperformed the state-of-the-art in several tasks. Among these are docu-
ment classification [5] and word sense disambiguation [4]. But again, the train-
ing of such models requires hyperparameter tuning, for instance, the size of the
embedding vector, the learning rate and the number of negative samples.

In this paper, we show that the doc2vec model is very sensitive to settings
of hyperparameters in classification tasks and analyze their influence. The goal
of this paper is to provide insights into sensible parameter configurations for
researchers and practitioners. More specifically, our research questions are the
following:

RQ1-: What is the overall variance in accuracy for different hyperparameter
settings? (Sect. 5.1)

RQ-2: Are optimal hyperparameters found on small datasets predictive for opti-
mal hyperparameter settings on larger training sets? (Sect. 5.2)

RQ-3: How significant is the influence of the hyperparameters on the accuracy?
(Sect. 5.3)

RQ-4: Are there interrelation between hyperparameters? That is, are there
parameters that depend on each other and thus need to be considered
jointly? (Sect. 5.4)

2 Related Work

As our work focuses on hyperparameter optimization of document embeddings
we review work from these research areas.

Text Embeddings. The representation of words as dense vectors (word embed-
dings) has become popular for many natural language processing tasks.
The popularity roots in the ability of these embeddings to encode semantic lin-
earities such as king - man + woman = queen and the resulting state-of-the-art
performance in several natural language processing tasks. The first approach to



Understanding the Influence of Hyperparameters of Text Embeddings 195

word embeddings is word2vec [12], which has been successfully used in applica-
tions like document classification [5] and zero-shot learning [16]. Word2vec can
be trained using two different architectures, cbow and skip-gram. In cbow the
vector of the input word is predicted by the vectors of the surrounding context
words. The skip-gram architecture predicts the context word vectors by the
input word vector. In both cases the number of context words is a hyperparame-
ter of this model, such that vectors of words which appear in the same context
will become similar whereas vectors from randomly sampled words (i.e., negative
sampling) will become dissimilar [13]. Doc2vec is an extension of word2vec that
learns embeddings for word sequences like paragraphs or entire documents [9]. In
doc2vec, each document is treated as a word. Similar to word2vec, doc2vec can
be trained using two different architectures dbow (distributed bag of words, sim-
ilar to skip-gram) and dmpv (distributed memory model of paragraph vectors,
similar to cbow). Dbow predicts the document words based on the document vec-
tor. Dmpv concatenates the document vector and the vectors of words in a window
to predict a document word. Model hyperparameters of doc2vec are the choice
of the architecture, the size of the context windows, the size of the embeddings,
the number of negative samples and whether hierarchical sampling of words is
used. We base our evaluation of hyperparamaters on document representations
of doc2vec and embed the evaluation in a text classification task.

Hyperparameter Optimization. The majority of machine learning algorithms
exposes hyperparameters which must be tuned carefully. Traditionally, the opti-
mization is carried out by humans, which likely leads to suboptimal results
because of inferior human intuition about multi-dimensional functions. In set-
tings with sufficient computing resources, grid search approaches evaluate all
combinations of hyperparameter values and are easily parallelizable. But, with
an increasing number of parameters and values the computation becomes
intractable. Bergstra and Bengio have found that randomly choosing values finds
better models and requires less time than exhaustive grid-search [1] because less
time is spent exploring parameters that have little influence. Bergstra et al.
presented two hyperparameter optimzation algorithms and compared them to
human experts and random search [2]. Their tree-structured Parzen approach
showed superior performance over the Gaussian process (GP) [15] approach,
while both outperformed manual and random search (in some cases with notable
margins). Further advances were made by Snoek et al., who used Bayesian Opti-
mization (BO) with GP priors to enhance the state of the art on the CIFAR-10
dataset by over 3% [18]. Despite its superior performance, the disadvantages of
BO is that another set of hyperparameters have to be tuned (e.g., the choice of
the kernel and the scopes for the hyperparameters) and – because of the missing
manual parameter setting, test, evaluation cycle – less insight about the para-
meter influence to the machine learning model is generated. Thus, in order to
understand hyperparameter influence, we apply grid search in our evaluation.



196 N. Witt and C. Seifert

embeddingsData 
Sets

evaluation

θm θa

θ

macro-averaged
accuracy

grid search on θ
cross-validation

θl

Fig. 1. Overview of the approach. Grid search is executed on the hyperparameter
vector θ, the model is evaluated using cross-validation.

3 Approach

Our goal to investigate the influence of hyperparameters on the model perfor-
mance, lead to questions about (i) overall performance variation, (ii) influence
of single variables, the (iii) interrelation between variables and (iv) how the size
of the training set influences optimal hyperparameters. To assess model perfor-
mance, we choose the task of text classification, as text classification has been
extensively studied [17] and comparative baselines are available. Also, this is a
task for which doc2vec embeddings are especially suited, as doc2vec tends to
build clusters of similar documents. The overall approach is depicted in Fig. 1.
First, for each dataset feature representations are calculated using doc2vec. This
step is governed by model hyperparameters of doc2vec θm (e.g., the size of the
embeddings) and learning parameters θl (e.g., the learning rate). Then, a classi-
fication model is trained, whereas the classifier is governed by the hyperparame-
ters of θa (such as k when using the k-Nearest neighbor classifier), composing
the complete vector of hyperparameters θ. The grid search is employed on the
hyperparameter vector θ. We use 5-fold cross-validation and report the results
in terms of (macro-averaged) accuracy – the most common evaluation measure
for text classification.

Because exhaustive search, even on a moderate number of parameters1

requires considerable computational and memory resources, we use a two-stage
strategy. In the first stage, we exhaustively search the hyperparameter space on
a limited number of training samples. The initial parameters are derived from
the literature [8,12]. In the second stage we train models on a larger training
set but on a restricted grid using the best performing hyperparameter com-
binations. This allows us to compare the performance against state-of-the-art
approaches using a similar amount of training data. Subsequently we also carry
out a Bayesian optimization to find an optimal hyperparameter configuration
and contrast the corresponding results to the results obtained using grid search.

4 Experimental Settings

We perform the experiments on well-known datasets for text classification and
evaluate the overall accuracy, the influence of single parameters, their interrelation
1 For example, 6 parameters with 3 values each results in 36 = 729 combinations. Even

worse, with 5-fold cross validation this results in 5 · 36 = 3645 models



Understanding the Influence of Hyperparameters of Text Embeddings 197

Table 1. Overview of the hyperparameter space θ in the stages S1, S2.

θ Description Type Values (S1) Values (S2)

θarch doc2vec architecture nominal dbow, dm dbow

θhs hierarchical sampling (off/on) boolean 0, 1 1

θns number of negative samples integer 1, 5, 20 5, 20

θd embedding size integer 2, 3, 8, 24, 64 24, 64, 256

θwin context window size integer 5, 20, 50 5, 30, 100

θts number of training documents integer 103, 104 104, 105

θα learning rate (log scale) real 0.001, 0.01, 0.1 0.01, 0.1, 1

θepoch number of training iterations integer 5, 30, 50 30, 100, 250

θk number of nearest neighbors integer 1, 5, 25 10, 50

Number of models 4860 324

and the stability of optimal parameters with varying sizes of the training set. The
source code of the experiments as well as additional material is available online2.

Parameter Configuration. Table 1 provides an overview of the parameter settings
for the two stages of the experiments. Stage 1 trains more models than Stage 2
but with fewer training examples, thus satisfying memory and time constraints.
The values for the first stage were chosen to cover a wide range from extremely
low to extremely high values also including values used in related work. The
values for the second stage are refinements over the first stage, while the most
promising configurations were chosen and their range was narrowed. Some values
were omitted (e.g. θarch = 1) whereas others were added (θd = 256 because
larger embeddings sizes seem to be promising). Generally, the accuracy of this
model increases with the size of the training data [3]. Hence, θts is considered an
external constraint rather than a value to be optimized. For the classifier we used
k-nearest neighbor approach, thus the hyperparameters set for the classification
model θa only consists of the number of neighbors.

Datasets. For the experiments, we chose two datasets from the domain of text
classification, that exhibit different characteristics, i.e., the order of magnitude
of contained documents and number of classes ,and are well-studied (e.g. [5–7]),
The amazon3 dataset, which was also used in [5] contains 12.8M user reviews
for products assigned to four different categories (Home and Kitchen, Elec-
tronics, Books and Movies and TV ). The dataset is strongly imbalanced with
8.9M Books, 1.69M Electronics, 1.7M Movies and TV and 0.55M Home and
Kitchen reviews. This implies that a trivial categorizer can achieve 69% accuracy.
The average length of the reviews is 796 tokens (i.e. sequences of characters

2 http://doi.org/10.5281/zenodo.495086
3 http://jmcauley.ucsd.edu/data/amazon/

http://doi.org/10.5281/zenodo.495086
http://jmcauley.ucsd.edu/data/amazon/


198 N. Witt and C. Seifert

surrounded by whitespaces). The 20newsgroups4 dataset consists of 18.846 news-
group articles categorized into 20 groups with an average length of 1902 tokens
per article. The same preprocessing was carried out for both datasets. In order to
reduce the noise in the text, short tokens (with less than 3 characters), quotation
marks, punctuation marks, whitespaces (except for space characters) etc. were
omitted5. Also, tokens that appeared less than three times where ignored. We
did not use the available train/test splits but randomly generated the splits dur-
ing the 5-fold cross validation runs. Further, we generated subsets with 1k, 10k
(20newsgroups, amazon) and 100k documents (amazon) by random sampling.

5 Results

In this section we first describe the results of the experiments w.r.t. the overall
performance, the influence of single parameters and the interrelation of para-
meters. We report these results on the training dataset with 10k documents.
Further, we assess the stability of optimal parameters across varying sizes of the
training dataset (1k, 10k and 100k documents).

5.1 Overall Performance

In terms of overall accuracy, results vary greatly across different parameter set-
tings. Table 2 provides an overview of the results obtained on the 20newsgroup
dataset with 10k training examples sorted by the rank of the model, where rank
1 is assigned to the best performing model. Table 2 also shows that the influence
of single parameters on the model accuracy is not obvious, e.g., while worst per-
forming models tend to have larger values for the number of negative samples
θns, some of the best performing models also have a value of θns = 20. The
variation of accuracy across models is equally prominent on the amazon dataset
(best performing model accuracy 0.9244, worst 0.1540) when trained on 10k
documents, confirming that model hyperparameter settings are crucial for suc-
cessful application of the learning algorithm. While the accuracy varies greatly
across hyperparameter settings, the behavior depends on the dataset. As shown
in Fig. 2 for some settings (e.g., 20newgroups, 10k training documents θd = 64)
accuracy decreases slowly from 73% and then drops rapidly (at approximately
rank 230). This means that most of the models are quite similar in accuracy, i.e.,
most parameter configurations are “good”, but some yield very low accuracy. In
comparison, other settings (e.g., 20newsgroups, 1k training documents θd = 64)
show a steady decrease of accuracy, meaning that there are only some very good
models, but many average- and bad-performing models.

We also observed that a well tuned doc2vec model achieves performance
comparable to approaches using more complex features and the same classi-
fier (k-NN). On the amazon dataset doc2vec achieves an accuracy of 0.924

4 http://qwone.com/∼jason/20Newsgroups/20news-bydate.tar.gz
5 Details available in ipython notebooks https://doi.org/10.5281/zenodo.809860

http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz
https://doi.org/10.5281/zenodo.809860


Understanding the Influence of Hyperparameters of Text Embeddings 199

(a) Varying embedding size θd

θarch = dbow

θarch = dm

(b) Varying model architecture θarch

Fig. 2. Classifier rankings for (a) different embedding sizes (θd) and (b) model archi-
tectures θarch. Accuracy obtained with 5-fold cross validation. Similar plots for other
variable combinations are available via http://doi.org/10.5281/zenodo.495086

(with 10k training examples) comparable to 0.926 in [5]. On the 20newsgroups
doc2vec achieves an accuracy of 0.73 with grid-search and 0.74 with Bayesian
optimization, which is comparable to 0.73 in [5].

http://doi.org/10.5281/zenodo.495086


200 N. Witt and C. Seifert

Table 2. Excerpt of the classifier results for the 20newsgroups dataset with 10k training
examples ordered by model performance, showing accuracy a and standard deviation
(averaged over cross-validation folds) of best and worst performing models for grid
search (GS) and results from the Bayesian optimization (BO).

Meth. Rank θk θα θarch θhs θepoch θns θd θwin a (stdev)

GS 1 5 .10 dbow 1 30 20 64 5 .7335 (.006)

GS 2 5 .01 dbow 1 50 20 64 5 .7296 (.007)

GS 3 5 .01 dbow 1 50 5 64 20 .7294 (.005)

GS 4 5 .01 dbow 1 50 5 64 50 .7292 (.006)

GS 5 5 .10 dbow 1 30 20 64 20 .7280 (.006)

GS 4856 25 .001 dbow 0 5 20 8 5 .0449 (.004)

GS 4857 5 .001 dbow 0 5 5 24 20 .0446 (.002)

GS 4858 25 .001 dbow 0 5 20 24 5 .0445 (.006)

GS 4859 5 .001 dbow 0 5 5 8 20 .0440 (.000)

GS 4860 25 .001 dm 0 5 5 8 20 .0424 (.001)

BO 1 10 .0396 dbow 1 14 11 245 40 .7415 (.003)

BO 2 8 .0893 dbow 1 15 15 58 48 .7389 (.002)

BO 3 15 .0223 dbow 1 28 17 96 13 .7341 (.004)

Table 3. Best classifications accuracy w.r.t the training set size using grid search. 18.8k
is the size of the 20newsgroups dataset. Order of elements of optimal θ as in Table 2.

10k 100k/18,8k

amazon .9244 .9516

θ∗ = (25, 0.1, cbow, 1, 50, 5, 24, 20) θ∗ = (10, 0.1, cbow, 1, 30, 5, 256, 5)

20newsgroups .7335 .8034

θ∗ = (5, 0.1, cbow, 1, 30, 20, 64, 5) θ∗ = (10, 0.1, cbow, 1, 30, 5, 256, 5)

5.2 Varying Training Data Set Size

The experiments confirm, that machine learning models benefit from more train-
ing data [3] (see Table 3). The accuracy gain of 7% on the 20newsgroups dataset
when the training size is raised from 10k to 18.8k indicates that the accuracy
could be enhanced even further, if more training data were available. The scal-
ing on the amazon dataset is different: 10k training examples are sufficient to
obtain good results. A tenfold increase in training samples only leads to a 2.7%
accuracy gain. As the amount of training data increases, the ideal value for the
learning rate also changes. Using 100k training documents, configurations using
θα = 0.01 outplay those with θα = 0.1. But correspondingly, more iterations are
necessary (100 or more compared to 30). Altogether, the learning rate is crucial;
Fig. 3b (right) depicts that models with θα = 1 fall back to the performance of
trivial classifiers. θd changes only slightly with respect to the training size, as
shown by Fig. 3b (left) and Fig. 3a (left). With 100k training models using 64



Understanding the Influence of Hyperparameters of Text Embeddings 201

dimensions perform marginally better than 24 dimensions, whereas the situation
with 10k training examples is vice versa. A similar relation can be observed on
the 20newsgroups dataset but with θd = 64 and θd = 256, respectively. In Fig. 3b
(left) we also see that models using θd = 256 overfit the data on the amazon
dataset, which leads to a declining performance.

5.3 Parameter Influence

We plotted the model accuracy for different hyperparameter values as exempli-
fied in Fig. 2 for the model architecture θarch and the embedding size θd. The
plots were created by collecting the results of all models where one parame-
ter was set to a specific value (e.g. the solid black line in Fig. 2a depicts the
accuracy of all models that used two dimensional embeddings). These models
were then ordered by accuracy. In terms of the model architecture, the distrib-
uted bag of words (θarch = dbow) models outperformed the distributed memory
(θarch = dm) models in every scenario as depicted in Fig. 2b. Similar behaviour
was observed for parameter θhs, models using hierarchical sampling which gen-
erally outperformed models not using hierarchical sampling. Very small embed-
ding sizes (θd ∈ {2, 3, 8}) have a strong negative impact on the accuracy. Larger
embeddings sizes (θd ∈ {24, 64}) yield more accurate classifiers as depicted in
Figs. 2a and 3. Interestingly, the best results with comparatively small embedding
sizes (e.g. 24 dimensions) are similar to those achieved with higher embedding
sizes. Further, we found little to no effect of window size θwin, the number of
negative samples θns and the number of nearest neighbors θk on the accuracy.
Finally, we found a strong influence and interrelation on the accuracy when vary-
ing the learning rate θα and the number of epochs θepoch. Thus, when choosing
these parameters they must be considered jointly as discussed subsequently.

5.4 Interrelation of Parameters

The experiments show a interrelation of the learning rate (θα) and the number
of epochs (θepoch) (see Fig. 4 (left)). Good accuracy is achieved when a high
learning rate is combined with few epochs. Likewise, a small learning rate in
combination with many epochs gains similar results (see Fig. 4 at 50 epochs).
It must be pointed out though that the training time mainly depends on the
epochs, which makes a setting with a high learning rate and few epochs favorable
when training time is crucial, since models with high learning rates are prone to
overfitting. But in scenarios where accuracy is the top priority and the training
time is negligible, a smaller learning rate with more epochs is favorable. Apart
from the interrelation between the learning rate and the epochs our experiments
found no additional interrelations (as exemplified by Fig. 4 (right)).



202 N. Witt and C. Seifert

P (a|θd = 2)
P (a|θd = 3)
P (a|θd = 8)
P (a|θd = 24)
P (a|θd = 64)

P (a|θns = 1)
P (a|θns = 5)
P (a|θns = 20)

(a) 10k training samples, left: varying θd, right: varying θns

P (a|θd = 24)
P (a|θd = 64)
P (a|θd = 256)

P (a|θα = 0.01)
P (a|θα = 0.1)
P (a|θα = 1)

(b) 100k training samples, left: varying θd, right: varying θα

Fig. 3. Approximation of classifier accuracy a on amazon dataset as probability density
estimated using Gaussian Kernel Density Estimation. Similar plots for other parame-
ters are available via http://doi.org/10.5281/zenodo.495086

Fig. 4. Parameter interrelations on amazon dataset with 10k training samples. Left:
To achieve optimal results θα and θepoch must be considered jointly, the parameters
depend on each other. Right: To achieve optimal results θd is tuned without considering
θepoch, the parameters are independent of each other.

6 Discussion

The experiments showed that, in general, hyperparameter settings have a
huge impact on the accuracy (Sect. 5.1). Further, we found four categories

http://doi.org/10.5281/zenodo.495086


Understanding the Influence of Hyperparameters of Text Embeddings 203

of hyperparameters: those with no influence on the accuracy, those with a clear
optimal value, those with many near-optimal values and those with a strong inter-
relation among them. Hyperparameters of the first category are the windows size
θwin and the number of negative samples θns. The missing effect of θwin indi-
cates that for this application a larger context is not predictive. Lau and Bald-
win report θns = 5 being the best choice for the task of duplicate detection and
determining semantic textual similarity [8], but performance for other values is
not reported. The second category, hyperparameters with a clear optimal value,
were found to be the type of architecture and whether hierarchical sampling was
used. In our experiments the dbow architecture outperformed the dm architecture
in every scenario (see Fig. 2), which accords with the literature [8–10]. Similarly,
classifiers with hierarchical sampling performed better than those without. Thus,
these parameters do not require much consideration, as they are binary and one
configuration always outperforms the other. The size of the embeddings belongs
to the third category, hyperparameters with many reasonable values. Very small
embedding sizes (θd = {2, 3, 8}) have a strong negative impact on the accuracy.
But beyond that magnitude, there is a broad range of reasonable values (24 to
256) that can yield good classifiers (Sect. 5.1). The best results are achieved when
θd is tuned according to the difficulty of the task at hand. On the relatively simple
amazon dataset (four classes) an embedding size of 24 to 64 was optimal whereas
the 20newsgroups dataset (20 classes) required 64 to 256 dimensions. All the learn-
ing hyperparameters fall in the fourth category. The individual parameters from
the parameter subset θl (i.e., θts, θα and θepoch) must be considered jointly and in
connection with the desired scenario.

7 Summary

We presented a study on hyperparameters for document classification tasks using
document embeddings, concretely doc2vec. Experiments on a text classification
task showed that the window size and the number of negative samples have
negligible influence, while the dbow and hierarchical sampling yield the best per-
formance. For the size of the embeddings vectors there is a range of reasonable
values (24–256). Model parameters and learning parameters showed no interrela-
tion and can be tuned separately, while all learning parameters (θts, θα, θepoch)
must be considered jointly. Those insights can be used in further research or
by practitioners to sensibly select initial hyperparameter configurations manu-
ally or restrict grid-search or Bayesian optimization approaches, which reduces
optimization time substantially.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

2. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, pp. 2546–
2554 (2011)



204 N. Witt and C. Seifert

3. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

4. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Embeddings for word sense disambigua-
tion: an evaluation study. In: Proceedings of Annual Meeting of the Association
for Computational Linguistics, vol. 1, pp. 897–907 (2016)

5. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q., et al.: From word embed-
dings to document distances. ICML 15, 957–966 (2015)

6. Lan, M., Tan, C.L., Low, H.B.: Proposing a new term weighting scheme for text
categorization. AAAI 6, 763–768 (2006)

7. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann
machines. In: Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 536–543. ACM (2008)

8. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights
into document embedding generation. CoRR abs/1607.05368 (2016)

9. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of International Conference on Machine Learning. JMLR Workshop
and Conference Proceedings, vol. 32, pp. 1188–1196 (2014). JMLR.org

10. Liu, Y., Liu, Z., Chua, T.S., Sun, M.: Topical word embeddings. In: AAAI, pp.
2418–2424 (2015)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

14. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of Empirical Methods in Natural Language Processing,
pp. 1532–1543. EMNLP (2014)

15. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, Cambridge
(2005)

16. Sappadla, P.V., Nam, J., Loza Menćıa, E., Fürnkranz, J.: Using semantic simi-
larity for multi-label zero-shot classification of text documents. In: Proceedings of
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, vol. ESANN. d-side publications, Bruges, Belgium, April
2016

17. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

18. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Proceedings of International Conference on Neural Infor-
mation Processing Systems, pp. 2951–2959. NIPS, USA (2012)

19. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural
Comput. 8(7), 1341–1390 (1996)

http://JMLR.org



