eArchiving: the Digital Black Hole

Marilyn Deegan
Digital Resources Director
Refugee Studies Centre
University of Oxford
Two key issues in eArchiving

- Digital preservation
 - which means ensuring full access and continued usability of data

- Preservation through digitization
 - which allows for greater security of physical analogue materials
Digitization vs microfilm for preservation: microfilm

- Microfilm advantages
 - Good microfilm is predicted to last 500 years
 - Microfilm is self-explanatory
 - Even without the technology, it can be understood
 - Microfilm preservation is well-understood
 - Microfilm is relatively cheap to store
 - It is a stable technology
Digitization vs microfilm for preservation: microfilm

- Microfilm disadvantages
 - microfilm is difficult to access
 - there is degradation between masters and copies
 - it is easily damaged in use
 - it has to be used in situ in the library as microfilm readers are not common outside libraries
Digitization vs microfilm for preservation: digitization

- Digitization advantages
 - digital files are easy to access and search
 - there is no degradation in copying
 - the first, tenth and millionth copies are all exactly the same
 - use does not damage
 - the technology is ubiquitous
Digitization vs microfilm for preservation: digitization

- Digitization disadvantages
 - the stability of the medium is questionable (tapes, CDs etc)
 - frequent refreshing needed
 - speed of hardware and software change means that data can be unreadable after a few years
 - formats change frequently
 - metadata systems are developing rapidly
Reborn and born digital materials

- Reborn digital
 - scanned from analogue materials
 - books, journals, manuscripts, photographs, etc etc
 - In most cases, we still have the originals
Reborn and born digital materials

- **Born digital**
 - created originally in digital form
 - may then be printed: books, journals, images, etc
 - may be unprintable because of the complexity
 - multimedia
 - reference works based on databases
 - web sites
 - the digital data is the original
Preservation and the digital black hole

- The scale of the problem
 - much vitally important data is now created digitally
 - some of it is unprintable
 - this data is part of the cultural memory of the late twentieth and early twenty-first centuries
 - some has undoubtedly already been lost
 - much more is in danger

- There is potentially a black hole in the record of our culture

- Action is urgently needed
Archiving the web

- The average life of a piece of information on the web is 44 days.
- Web sites change almost daily.
 - Some change every few minutes:
 - News sites
 - Share prices
 - Dynamic data
- Much web data is ‘hidden’
- The ‘deep web’
Digital preservation initiatives

- The Library of Congress
 - in November 2000, had to act very quickly to archive web sites relating to Clinton as the were being dismantled very fast
 - is now planning to spend $100 million dollars on preserving federal digital information

- Europe
 - NEDLIB project
 - European deposit libraries who are trying to find ways of archiving digital legal deposit materials

- UK
 - British Library
 - £20 million on a digital store
Methods of digital preservation

- Technology preservation
- Refreshing
- Migration and reformatting
- Emulation
- Data archaeology
- Output to analogue media
Technology preservation

- Keeping all the hardware and software to run the data
- Means keeping a whole range of computers in operation
 - which is expensive
- A large number of operating systems and software packages would need to be supported
- Support would be very expensive
Refreshing

- Electronic media can become corrupt or be superceded
 - floppy discs, hard drives, tapes, CDs, etc
- It is necessary to move data periodically to new media
- There is no change in the configuration of the data
- Regular refreshing needs to be done even if other preservation strategies are adopted
Migration and reformatting

- As data formats change, data streams will need to be moved to new formats.
- This process will change the actual configuration of the data, and some contextual information might be lost.
- Data is sometimes reformatted when it is accessioned in order that it is easier to preserve it in the long term.
 - Text may be converted from a proprietary format to SGML or XML.
 - Images may be converted from a proprietary format to TIFFs.
Migration and reformatting

- This is a relatively expensive process as all data has to be converted whether it is eventually needed or not.
- It is a just-in-time method.
- This is the method of preservation which has received most attention up to now.
Emulation

- This is the process of building hardware or software which will mimic the functions of other hardware and software in order that programs will run.
- An example of this is the emulators that can make Macintosh computers run Windows software.
- Emulation would require:
 - Data to be stored in its original formats.
 - Software to be stored with full documentation.
 - Hardware to be built to emulate the original machines.
Emulation

- Emulation is a just-in-case method
 - software is only emulated when the data is needed
- Costs are unknown
- Long-term implications unknown
Data archaeology

- Sometimes lost data can be recovered
- But it takes painstaking and intensive work on data archaeology
- May need to track electrical impulses with recording devices
- Not a strategy for general preservation
- But could be useful for rescue work
Output to analogue media

- Printing out documents
- Computer output to microform
 - automatic outputting to film or fiche
- For key documents, this may be a good insurance policy
Conclusions

- eArchiving is the most crucial issue in the digital libraries world
- It is of vital importance to the whole of society as it concerns our cultural memory
- It is expensive
 - and we are not really sure of the costs
- It requires international effort
 - lots of activity in USA, Australia, Europe