
Utility-based High Performance Digital Library

Systems

Hussein Suleman

Department of Computer Science, University of Cape Town,
Private Bag X3, Rondebosch, 7701, South Africa

hussein@cs.uct.ac.za

Abstract. Many practical digital library systems have had to deal with
scalability of data collections and/or service provision. Early attempts at
enabling this scalability focused on data/services closely coupled with or
tightly integrated with various high performance computing platforms.
This inevitably resulted in compromises and very specific solutions. This
paper presents an analysis of current high performance systems and mo-
tivates for why utility computing can subsume existing models and better
meet the needs of generic scalable digital library systems.

1 Introduction

Cloud computing is the current but ill-defined buzzword in computing for the
use of abstract online resources [15] - utility computing is a specific subset of
cloud computing whereby virtual computing and storage resources are acquired
(or released) on-demand without the consumer of the resource knowing their
physical location [10]. The most common scenario is the need for a large numbers
of computers for a short period of time, for example to index a large ingested
collection. Utility computing is arguably more cost-effective than other forms of
high performance computing (HPC) because of the efficiency of shared resources
for which the management is essentially outsourced.

Designers of digital library systems (DLSes) have long grappled with the
problem of how to construct systems that meet multiple criteria, including el-
ements of scalability and preservation of data [7]. As HPC technologies have
emerged and matured, DLSes were designed to exploit them. These include sym-
metric multiprocessors, clusters and grids. Utility computing, a relatively newer
paradigm, is arguably a better fit because it provides an ideal compromise among
features to enable high performance digital libraries that can be provisioned as
needed (i.e., on-demand).

The rest of this paper provides an overview of current high performance com-
puting technology and how these are utilised in the provision of digital library
services, and then how an alternative digital library system can be designed
based on utility computing. The focus is on service provision rather than data
scalability as service provision must be built over utility computing platforms
while scalable data storage is often a basic service.



2 H. Suleman

2 High Performance Computing

High performance computing is about the construction of hardware and software
systems to process a computationally-intensive job. This often is distinguished
from high throughput computing, which is about systems to process a large
number of jobs. As these are not completely disjoint, the former term has become
the norm to describe both forms of computing.

Many forms of HPC have been adopted in computer systems, including:
cluster computing, grid computing, cloud/utility computing, edge computing,
symmetric multiprocessing, multicore computing, general-purpose graphics pro-
cessing units, cell processors, field programmable gate arrays, server farms and
volunteer computing. Each of these is discussed briefly below.

2.1 CPU Models

The earliest form of scalability in online systems was effected using server farms.
These are individual machines, each able to respond to requests from the Web,
with possibly a shared database backend or independent replicated data stores
(if the site is mostly read-only). Server farms are effective when the majority
of processing does not require database updates - in this case the round-robin
IP address resolution from the DNS system automatically distributes the load
evenly among the servers. DSpace implementers have recommended the use of
such a technique for some degree of scalability because it is supported by the
Web server and the architecture of DSpace [11].

Modern multicore CPUs contain multiple processing units in a single mi-
crochip. Each core is capable of logic and arithmetic operations, with a single
shared memory for all cores. On-chip caches can be shared in a multicore CPU
to allow for a high degree of integration. Multicore machines are supported by
operating systems at the process/thread level - the operating system is able
to allocate different processes to run on different cores simultaneously. Thus,
an application that is appropriately split into sub-tasks will automatically take
advantage of the additional cores. Most desktop computers and servers use mul-
ticore CPUs, although most programming models are still serial.

Symmetric multiprocessing refers to computers that contain multiple inde-
pendent CPUs on separate microchips. These also are managed by modern op-
erating systems at the process level and behave very similarly to multi-core
systems. They are not, however, as efficient for inter-process communication be-
cause this is between-chip rather then within-chip. SMP systems were popular in
early supercomputers and were the focus of early attempts to achieve scalability
in digital library systems [4].

Mosix [5] is an operating system tool that binds a group of networked ma-
chines into a single virtual operating system. The programmer or end user sees a
group of machines as a single machine and Mosix handles the distribution of pro-
cesses and inter-process communication. Mosix has the advantages of SMP from
an end-user perspective, but has a much slower interconnecting network between
processors. Mosix, SMP and multicore systems were used in experiments with



Utility-based High Performance Digital Library Systems 3

parallelising metadata harvesting - and it was shown that the same applications
would work on all architectures with varying performance [19].

Cell processors [14] contain a main controlling core but many sub-cores for
execution of data-parallel tasks. Cell processors were made popular by their
incorporation into the Playstation 3 video games consoles for graphics processing.

General-purpose Graphics Processing Units (GPGPUs) [17] exploit the in-
creasing computational power of microchips on commodity graphics cards, which
are able to perform some operations in parallel, thus resulting in much faster
processing than traditional CPUs. As such, they are useful for a large number
of computation-intensive tasks. Tools for programming GPUs are still in their
infancy and high end GPUs are not yet considered commodity components.

Field-Programmable Gate Arrays (FPGAs) [9] are microchips that can per-
form specific tasks in hardware which is reconfigured at runtime. This allows for
maximum performance, although there are limitations in the size of FPGAs and
there is still a need for a CPU for general purpose processing. FPGAs are most
suited to highly parallel computation-intensive tasks.

There are currently no well-known digital library applications that explicitly
use cell processors, GPGPUs or FPGAs.

2.2 Machine/Storage Models

Cluster computing is when a group of co-located standalone computers - usu-
ally commodity machines - are interconnected into a LAN using a high speed
network fabric. Each machine on the cluster runs an independent task or set of
tasks, with coordination taking place over the high speed network. Clusters are
suited to problems which can be decomposed into separate processes with some
communication. The amount of communication is closely related to the speed of
the interconnect, so general purpose clusters tend to use fairly high-end intercon-
nects such as Gigabit Ethernet. Clusters have been used in scientific computing
for space-partitioned discrete event simulations. Most commercial search engines
such as Google use a cluster architecture for their indexing and querying oper-
ations because of the high memory bandwidth required for efficient indexing
(whether for search or browse indices) [6].

Grid computing refers to a coordinated sharing of separately-owned resources
in a wide area network, typically overlaid on the Internet [13]. Grid computing
encompasses a suite of technologies to control access to resources, support data
transfers and manage processes on remote systems. As the computational and
storage resources are potentially far apart, the network interconnect is not as
controlled and speeds are typically far lower than with clusters. As a result, grids
are suitable where there is little communication among processes and where
the data to be transferred is small relative to the amount of computation to
be performed. In the digital library community, grids have been used for both
computation and storage. Storage Resource Broker and iRODS [18] are used
to create data (storage) grids over hetergeneous resources. DILIGENT [8] is a
digital library management system that used a grid infrastructure to interconnect
services distributed over a wide area.



4 H. Suleman

Edge computing is the use of computers at the edges of the network to per-
form computation, instead of machines at the core. While this is not rigorously
defined, there are some examples in practice that qualify as edge computing.
Content distribution networks are one example, where content and sometimes
services are distributed to sites closest to the end-user. This makes the service
provision scalable by reducing the network distance from user to service. An-
other example is the use of the user’s desktop machine to perform some of the
computation instead of all computation happening on servers. Asynchronous
Javascript and XML (AJAX) Web applications are able to scale to a far greater
degree because much of the computation occurs on the clients’ computers. In
the Bleek and Lloyd project, a prototype search engine was created in AJAX to
demonstrate how ranked retrieval could be performed on the client using local
data, thus eliminating the need for network interaction and resources on the
server [20].

Volunteer computing is the use of idle desktop computers to perform compu-
tation for which it is not possible to secure dedicated high performance systems.
SETI@Home popularised this form of distributed computing for the large-scale
analysis of astronomical data and the technology has since evolved into the gen-
eral purpose BOINC framework for sharing CPU cycles [3]. Volunteer computing
has great potential for scalability but sometimes limited applicability because of
the uncertain widely distributed resources and unclear trust relationships. No
known digital library systems are using volunteer computing.

Figure 1 illustrates key differences among these machine models, arranged
from centralised to distributed. The dotted line cutting across the categories
indicates how utility computing compares against the other machine models.

ownership
central ised

cluster grid edge volunteer

distr ibuted

interconnect
fast slow

machines
hundreds TO thousands hundreds OF thousands

uni formity
very uniform machines widely varying machines

rel iabil i ty
very rel iable very uncertain

cost
very high almost zero

ut i l i ty

Fig. 1. HPC Machine configurations



Utility-based High Performance Digital Library Systems 5

2.3 Utility Computing

Utility computing has emerged as a generalisation of most of the existing HPC
models, where the exact nature of the technology is not visible to the end-user or
the programmers. Instead all interaction is via an API and the user may assume
that the machines are interconnected with a high-speed network, with localised
access to data.

Two core services are provided in utility clouds: virtual machines and virtual
data stores. Virtual machines are machines that can be created on demand, often
programmatically, and used remotely. Amazon’s Elastic Compute Cloud (EC2)
[1] is a popular example of this service. Virtual data stores allow the storage of a
virtually unrestricted amount of information, with a uniform addressing scheme.
Amazon’s Simple Storage System (S3) [2] is a popular example of this service.

The provisioning of utility computing can be done either remotely as an out-
sourced operation, or internally using similar APIs. Eucalyptus [16] is a software
suite that emulates the APIs created by Amazon, allowing an organisation to
provision its own utility computing services, while still retaining the benefit of
a clean separation between services and provisioning.

As shown in Figure 1, utility computing has the benefits of clusters in terms of
ownership of resources being centralised, high speed interconnects, a reasonable
level of homogeneity of machines and a high degree of reliability. In addition,
there are generally many more machines available than in a typical cluster (grid-
like), while the cost of processing is much smaller since there is no upfront and
continuous hardware acquisition cost (volunteer computing-like).

3 Designing Utility Computing HPDLs

While utility computing systems may offer a single scalable data store, there is
currently no single scalable machine architecture. Applications therefore must
be designed to make optimal use of virtual machines, possibly adopting the
various architectures of pre-utility systems [21]. Figure 2 illustrates 4 possible
architectures to incorporate scalability within the utility cloud.

The Proxy architecture has a manager node act as a proxy for all external
connections to service nodes. This is similar to a cluster.

The Redirector architecture has the manager node act as a lookup table for
service nodes, with the external client making direct connections into the cloud
thereafter. This is similar to a grid.

In the Round Robin architecture the client uses the DNS system (or a similar
resolution service) to obtain the address of the next service node to use. DNS
typically rotates IP addresses to balance the load but the manager must still
update the DNS tables based on the number of service nodes available. This is
similar to a server farm.

In the Client-side model, the manager sends a list of nodes to the client upon
request and the client uses this list to rotate requests to service nodes. This is
similar to an edge computing model. This model ought to have the highest level
of scalability and reliability.



6 H. Suleman

processing

processing

node2

node1

node3

manageruser

node2

node1

node3

manager

user

storage

storage

Architecture A: Proxy

Architecture B: Redirector

processing

node2

node1

node3

manager

user

storage

Architecture C: Round Robin

DNS

processing

node2

node1

node3

manager

user

storage

Architecture D: Client-side

Fig. 2. Cloud Computing machine configurations



Utility-based High Performance Digital Library Systems 7

Thus, within a utility cloud, digital library services can be designed to em-
ulate most existing HPC architectures - given that different DL services are
most efficient on different architectures, utility computing offers the flexibility
of multiple architectural models.

4 Conclusions and Future Work

Utility computing shows promise to provide computing facilities with the best
features of multiple HPC technologies and substantial flexibility for implement-
ing scalable systems. The system architectures presented here are currently be-
ing developed into prototype digital repository systems to experimentally verify
scalability for popular services.

There is, however, still a need to balance scalability with preservation. The
rapid advances in HPC technology has meant that no one option has been pre-
ferred by the DL community. Thus, there are no standard approaches to scal-
ability and this makes preservation even more difficult. The Duraspace project
is attempting to build more preservable cloud stores by replicating data across
multiple cloud platforms, but this is still a work in progress [12].

Utility computing narrows the gap between HPC and on-demand computing
by making resources available as required. Future work will focus on how to
make use of those resources most cost-efficiently, without human intervention or
with minimal intervention. This is vital for small collections to scale up in size
or services without a redesign of the digital library system.

Finally, utility computing is not common in most developing countries be-
cause the Internet connection into the utility cloud is not fast enough. More
work is needed on the localisation of utility clouds to ensure equal access to the
technology.

5 Acknowledgements

This project is made possible by funding from University of Cape Town and
NRF.

References

1. Amazon.com (2009). Amazon Elastic Compute Cloud. Website
http://aws.amazon.com/ec2/

2. Amazon.com (2009). Amazon Simple Storage Service (Amazon S3). Website
http://aws.amazon.com/s3/

3. Anderson, D. P. (2004). BOINC: A system for public-resource computing and stor-
age, in Proceedings of the 5th IEEE/ACM International Workshop on Grid Com-
puting, 8 November 2008, ACM Press.

4. Andresen, D., Yang, T., Egecioglu, O., Ibarra, O. H., and Smith, T. R. (1996).
Scalability Issues for High Performance Digital Libraries on the World Wide Web,
ADL, pp. 139, Third International Forum on Research and Technology Advances in
Digital Libraries (ADL ’96), IEEE Computer Society.



8 H. Suleman

5. Bar, M. (2003). openMosix, a Linux Kernel Extension for Single System Image Clus-
tering. in Proceedings of Linux Kongress: 10th International Linux System Tech-
nology Conference, 15-16 October, Saarbrücken, Germany.

6. Barroso, L. A., Dean, J., and Hölzle, U. (2003). Web Search for a Planet: The Google
Cluster Architecture, IEEE Micro, March-April 2003, IEEE Computer Society.

7. Borgman, C. L. (2002). Challenges in Building Digital Libraries for the 21st Cen-
tury, in Proceedings of Digital Libraries: People, knowledge, and technology : 5th
International Conference on Asian Digital Libraries, ICADL 2002, Singapore, 11-14
December 2002, Springer.

8. Candela, L., Castelli, D., Pagano, P., and Simi, M. (2005). Moving Digital Library
Service Systems to the Grid, Lecture Notes in Computer Science, Volume 3664,
Springer.

9. Compton, K., and Hauck, S. (2000). An Introduction to Reconfigurable Computing,
IEEE Computer, April 2000, IEEE Computer Society.

10. Danielson, K. (2009). Distinguishing Cloud Computing from Utility Computing,
eBizQ, 26 March 2008. Available http://www.ebizq.net/blogs/saasweek/2008/03/
distinguishing cloud computing/

11. DSpace.org (2009). Clustering, DSpace Wiki. Available
http://wiki.dspace.org/index.php/Clustering

12. Duraspace (2009). Duracloud. Website http://www.duraspace.org/duracloud.html
13. Foster, I., and Kesselman, C. (2004). The Grid 2: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann.
14. Gschwind, M., Hofstee, H. P., Flachs, B., Hopkins, M., Watanabe, Y., and Ya-

mazaki, T. (2006). Synergistic Processing in Cell’s Multicore Architecture, IEEE
Micro, March-Apruil 2006, IEEE Computer Society.

15. Knorr, E., and Gruman, G. (2008). What cloud computing really means, Infoworld,
7 April 2008. Available http://www.infoworld.com/d/cloud-computing/what-cloud-
computing-really-means-031

16. Nurmi, D., Wolski, R., and Grzegorczyk, C. (2008). Eucalyptus : A Technical Re-
port on an Elastic Utility Computing Archietcture Linking Your Programs to Useful
Systems, Computer Science Technical Report Number 2008-10, UCSB. Available
http://www.cs.ucsb.edu/research/tech reports/reports/2008-10.pdf

17. Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
and Purcell, T. J. (2007). A Survey of General-Purpose Computation on Graphics
Hardware, Computer Graphics Forum, 26(1), pp. 80-113, Blackwell-Synergy.

18. Rajasekar, A., Wan, M., Moore, R., and Schroeder, W. (2006). A prototype rule-
based distributed data management system, in Proceedings of HPDC Workshop on
Next-Generation Distributed Data Management, 19-23 June 2006, Paris.

19. Suleman, H. (2006). Parallelising Harvesting, in Proceedings of 9th International
Conference on Asian Digital Libraries, ICADL 2006, Kyoto, 27-30 November 2006,
Springer.

20. Suleman, H. (2007). in-Browser Digital Library Services, in Kovacs, Las-
zlo, Norbert Fuhr and Carlo Meghini (eds): Proceedings of Research
and Advanced Technology for Digital Libraries, 11th European Conference
(ECDL 2007), pp. 462-465, 16-19 September, Budapest, Hungary. Available
http://pubs.cs.uct.ac.za/archive/00000434/01/ecdl 2007 ajax.pdf

21. Wayner, P. (2008). Cloud versus cloud: A guided tour of Amazon,
Google, AppNexus, and GoGrid, InfoWorld, 21 July 2008. Available
http://www.infoworld.com/d/cloud-computing/ cloud-versus-cloud-guided-tour-
amazon-google-appnexus-and-gogrid-122


	ECDL2009_Workshop_Notes 74
	ECDL2009_Workshop_Notes 75
	ECDL2009_Workshop_Notes 76
	ECDL2009_Workshop_Notes 77
	ECDL2009_Workshop_Notes 78
	ECDL2009_Workshop_Notes 79
	ECDL2009_Workshop_Notes 80
	ECDL2009_Workshop_Notes 81



