
 1

 
 
 
 
 
 
 

SYSTEM DYNAMICS MODELING: 
FROM MECHANICS TO CHEMISTRY 

 
 

Michele D’Anna, Hans Fuchs and Paolo Lubini 
 

ABSTRACT 
In this paper, we discuss a contribution toward the use of analogical reasoning by explicit system dynamics 
modeling of physical processes. The relational structures found in simple models are transferred to an example of 
chemical processes leading to chemical equilibrium. We present an experiment on the mutarotation of D-glucose. 
A dynamical model will be built that makes use of amount of substance and chemical potential differences in 
analogy to quantities of fluid and pressure differences in fluid phenomena, or electric charge and voltage in 
electricity. The model is simulated and results are compared to experimental data. The approach presented is 
suitable to advanced high school or to introductory college courses in applied science and engineering 
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INTRODUCTION 
 
Analogical reasoning is considered a powerful tool for learning and thinking in the sciences (Fuchs, 
2006). When dealing with macroscopic dynamical systems, analogical structures in physics emerge 
quite naturally. Explanations of processes commonly make use of a structure built upon the schema of 
(potential) differences of intensive quantities, and the schema of amount of fluid-like quantities 
(extensive quantities). The third element is the schema of force or power which is related to intensity 
and (fluid-like) quantity, and can be used to form the foundation of our energy principle. We call the 
overall structure a force dynamic gestalt (Fuchs, 2007). 
 
Sadi Carnot’s description of the operation of heat engines serves as an example of this explanatory 
structure (Fuchs, 1996): “D'après les notions établies jusqu'à présent, on peut comparer avec assez de 
justesse la puissance motrice de la chaleur à celle d'une chute d'eau […]. La puissance motrice d'une 
chute d'eau dépend de sa hauteur et de la quantité du liquide; la puissance motrice de la chaleur 
dépend aussi de la quantité de calorique employé, et de ce qu'on pourrait nommer, de ce que nous 
appellerons en effet la hauteur de sa chute, c'est-à-dire de la différence de température des corps entre 
lesquels se fait l'échange du calorique.” (Carnot, 1824). Caloric is the fluid-like thermal quantity that 
falls through a potential difference (temperature difference) and as a result releases energy at a certain 
rate (power). 
 
To be concrete, intensive and extensive quantities are pressure and volume in fluids, electric potential 
and charge in electricity, temperature and entropy in heat, and speed and momentum in translational 
motion.  
 
For the simplest dynamical phenomena that commonly lead to equilibrium, explanations take the 
following form. A process consists of the flow of a fluid-like quantity (volume, charge, entropy, 
momentum) from one storage element to another. The flow is driven by a difference of the associated 
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potential (pressure, electric potential, temperature, speed) and persists as long as the potential difference 
has not reached a value of zero (the relation between flow and potential difference is called flow 
characteristic). The potentials themselves depend upon the amount of the fluid-like quantity stored in a 
system, and the storage element itself (capacitive characteristic). Analogies of this type become 
particularly evident when we use system-dynamics tools to convert the word model presented above 
into a formal mathematical model (see Fig. 1). 
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Figure 1. The phenomena of the equilibration of fluid levels, voltages, velocities, and 
temperatures can be explained with the help of analogous model structures. Rectangles 
symbolize fluid-like stored quantities; pipelines (fat arrows) stand for transports. (In the 
case of thermal equilibration, we have left out the production of entropy which, however, 
is commonly very small compared to the flow of entropy; Fuchs, 2006, p. 172). 

 
These tools make use of a very few elements which allow us to translate our ideas into formal 
representations. We only need a symbol for stored quantities, another for flows (generally speaking, for 
rates of processes), and one for formulating special relations such as flow and capacitive laws. 
 
Each of the system-dynamics models presented in Fig. 1 allow us to simulate the behavior of systems 
which tend toward equilibrium (Fig. 2). 
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Figure 2. Two communicating oil tanks (top left), data of the equilibration of levels (top 
right), situation sketch (bottom left) and SD model diagram (bottom right). 

 
Chemical phenomena are no strangers to this explanatory pattern. Chemical reactions running toward 
equilibrium are common, and the well known quantities of amount of substance (n) and the chemical 
potential (µ) provide the conceptual background for explanations analogous to those used in fluids, 
electricity, heat, and motion. This we will demonstrate in the following sections where we consider the 
phenomenon of mutarotation of D-glucose. 
 
EXPERIMENT AND WORD MODEL 
 
Here we present the background on and the results of an experiment measuring the mutarotation of D-
glucose. The phenomenon will be explained with the help of a word model that makes use of the form 
of reasoning discussed in the Introduction. 
 

 
 

Figure 3. Apparatus for measuring the rotation of the plane of polarization of light 
passing through a solution of D-glucose. The angle change in the course of time indicates 
that chemical reaction is taking place in the solution. 
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Background and experimental procedure 
At the beginning of the 19th century, some dissolved substances were observed to rotate the plane of 
polarization of light (optically active substances, Fig. 3). Biot’s law states that 
 

[ ] *lcϕ ϕ=  (1) 
 
Here, ϕ is the angle of rotation, [ϕ] denotes specific rotation of the particular solution (taken at 20°C 
and with the light of sodium), and l and c* stand for the distance the light travels in the solution and 
mass concentration, respectively. It has been observed that the specific rotation of some solutions can 
change over the course of time. It tends to assume a particular value which is independent of the initial 
composition of the solution.1 It has been found that in such situations the substance under study can 
exist in two (or more) distinct forms, called anomers, each one characterized by its own specific 
rotation. In solution the mixture tends towards a well defined composition in equilibrium. The final 
condition depends upon the nature of the substance under study, the solvent considered, temperature, 
etc. 
 
In an aqueous solution of D-glucose, these anomers (called α-D-glucose and β-D-glucose) have 
different optical properties (different specific rotation [ϕ], see The Merck Index, 2006): 
 

( ) ( )
( ) ( )

o o 3

o o 3

112 / dm g/mL 1.12 / m kg/m

18.7 / dm g/mL 0.187 / m kg/m

α

β

ϕ

ϕ

⎡ ⎤ = + ⋅ = + ⋅⎣ ⎦
⎡ ⎤ = + ⋅ = + ⋅⎣ ⎦

 (2) 

 
For a solution which contains both forms of D-glucose the specific rotation can be expressed as follow: 
 

( )1eff x xα βϕ ϕ ϕ⎡ ⎤⎡ ⎤ ⎡ ⎤= − + ⎣ ⎦⎣ ⎦ ⎣ ⎦  (3) 
 
Where / totx n nβ=  is the β-D-glucose molar fraction. 1–x stands for the molar fraction of α-D-glucose. 
The time evolution of the angle measured in a typical experiment is reported in Fig. 4 (left). From the 
foregoing we easily obtain the molar fraction x: 
 

effx α

α β

ϕ ϕ

ϕ ϕ

⎡ ⎤ ⎡ ⎤− ⎣ ⎦⎣ ⎦=
⎡ ⎤ ⎡ ⎤− ⎣ ⎦⎣ ⎦

 (4) 

 
In order to obtain the time dependence of the chemical amounts we must remember that Biot’s law 
involves mass concentrations c*. Expressed as molar concentration c we obtain 
 

( ) ( )

*

*

( ) ( ) ( ) ( )

( ) ( ) 1 ( ) 1 ( )

tot
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tot
tot

Vcn t Vc t Vc x t x t
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β β

α α

= = =

= = − = −

 (5) 

 
for the amount of substance of the two forms of D-glucose as functions of time. The result of our 
experiment is shown in the graph on the right of Fig. 4. 
 

                                                 
1 See W. Pigman and H.S Isbell (1969) which refers to the pioneering works of A.P. Dubrunfaut (1846) 
and L. Pasteur (1848). H.T. Lowry (1899) first introduced the term mutarotation. 
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Figure 4. Angle of optical rotation measured in a typical experiment showing the 
mutarotation of D-glucose (left). The data has been transformed to obtain the amount of 
substance of α- and β-D-glucose (right). We prepared 100.0 g of an aqueous solution 
containing 10.0 g of pure α-D-glucose. The length of the optical path was 20.0 cm (see 
Fig. 3). Data was taken at room temperature. 

 
A word model 
Three things can be observed in the experiment. Firstly, the process runs fast at the beginning, slowing 
down as time goes on and, secondly, the reaction which leads to a change of the quantities of α and β-
D-glucose reaches equilibrium. Finally, in equilibrium, neither the amount of substance nor the 
concentration of the two species have become equal. Since we have seen curves of the type presented in 
the diagram on the right of Fig. 4 in other phenomena in physics, it seems reasonable to use the same 
type of explanation for the present phenomenon. The quantity of α-D-glucose in solution decreases 
with time since some of it converts into β-D-glucose. As a result, the amount of β-D-glucose increases. 
The rates of change of amount of substance are equal to the rate of production or destruction of β- and 
α-D-glucose, respectively. We now assume that the reaction rate depends upon the difference of an 
intensive chemical quantity. This difference will become zero in equilibrium. Obviously, the quantity in 
question cannot be the amount of substance (Fig. 4, right). We might be surprised, however, to find that 
the concentration of the substances is not the quantity we are looking for either. Rather, the intensive 
quantity is the chemical potential. The dependence of the chemical potential upon the concentration 
must be such as to make the potential difference vanish in equilibrium. If we assume that the chemical 
potential of a dissolved substance increases with increasing concentration, we now understand the 
slowing down and eventual halting of the reaction: The initial potential difference that drives the 
reaction becomes smaller as time goes on. 
 
CHEMICAL POTENTIAL OF DILUTE SOLUTIONS 
 
The solutes of dilute solutions contribute to the pressure of the solution in a manner that is analogous to 
that of dilute (i.e., ideal) gases (see Fuchs, 1996, p. 496 for details): 
 

sp R cT=  (6) 
 
Here, R is the universal gas constant, and T is the (Kelvin) temperature of the solution. Since the 
chemical potential of ideal gases is 
 

0
0( , ) ( , ) ln pT p T p RT

p
μ μ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (7) 

 



 6

 (Fuchs, 1996, p. 478), an analogous relation holds for the chemical potential of the dissolved 
substance: 

0
0( , ) ( , ) ln cT c T c RT

c
μ μ ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

 
(8) 

c0 is the standard value of concentration. This expression can be used to derive the relation of 
concentrations of two interacting (reacting) species in (chemical) equilibrium. We consider a reaction 
 

A B→  
 

Since the difference of the chemical potential of the species must vanish in equilibrium, i.e., 

 
we have 
 

0
B
0

A

eq

eq

c c
c c

=K  (9) 

 
where the equilibrium constant K is related to the chemical potential difference of the species for 
standard conditions: 

( )0 0
B A lnRTμ μ− = − K  (10)

  
Note that since the standard concentrations of A and B are the same, the equilibrium constant equals the 
ratio of the equilibrium concentrations.  
 
The case of mutarotation of D-glucose (Fig. 4) allows us to determine the numerical value of the 
chemical potential difference. Since, according to our data, K = 1.74, this difference turns out to be 
roughly – 1.36 kJ/mol at 295 K (temperature of the solution in the experiment). The value of the 
equilibrium constant calculated from the literature is 1.75 (The Merck Index, 2006). 
 
A SYSTEM-DYNAMICS MODEL OF MUTAROTATION 
 
The word model presented above and our knowledge of the dependence of the chemical potential upon 
the concentration of a species of D-glucose lets us construct a simple system-dynamics model of the 
process of mutarotation (Fig. 5).2 
 

                                                 
2 We assume here that mutarotation of D-glucose can be treated as a direct reaction of α-D-glucose into 
β-D glucose. This can be done since an intermediate form appearing in reality exists only in very low 
constant concentrations (Rasiel and Freeman, 1970). 

0 0A B
A B0 0ln ln

eq eqc cRT RT
c c

μ μ
⎛ ⎞ ⎛ ⎞

+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Figure 5. Diagram of a system-dynamics model representing the ideas expressed in the 
word model describing the phenomenon of mutarotation. Note the laws of balance of 
amount of substance for α-D-glucose and β-D-glucose (rectangles and flows), the 
determination of the chemical potentials from the amounts, of the chemical potential 
difference from the chemical potentials, of the reaction rate in terms of the chemical 
potential difference, and of the production rates in terms of the reaction rate. The model 
diagram was constructed in Stella. 

 
The model consists of the two laws of balance for α-D-glucose and β-D-glucose 
 

,n n

dndn
dt dt

βα
α βπ π= =  (11)

 
The production rates πnα and πnβ are directly related to the reaction rate πR, where the concrete relation 
is a result of stoichiometry. In our case we have 
 

,n R n Rα βπ π π π= − =  (12)
 
Furthermore, the constitutive relations for the chemical potential difference is 
 

( )ln ln
c

RT
c
β

α

μ
⎡ ⎤⎛ ⎞

Δ = − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

K  (13)

 
and the reaction rate is determine by 
 

1
R

nR
π μ= − Δ  (14)

 
The last relation assumes the simplest form of a reaction driven by a chemical potential difference, 
namely, a rate proportional to the driving force. If we assume such a relation for the chemical reaction, 
we have to introduce a reaction constant. This can be done in the form of a reaction resistance Rn 
(which is constant) as shown in Eq. (14). Whether or not the relation describes the actual progress of the 
reaction well enough can only be determined by comparing actual data to results of the simulation of 
our model. Quite obviously, for the present reaction, the assumption of a linear reaction law is 
satisfactory (Fig. 6). 
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Figure 6.  Data of the experiment and simulation results of the model presented in this 
section. Note that the linear form (linear in the difference of the chemical potential) of the 
reaction rate is satisfactory. The model was implemented and simulated in Berkeley 
Madonna. 

       
FORMAL CONSIDERATIONS 
 
In chemical kinetics, a different expression for the reaction rates is commonly used. In the case of a 
reaction  
 

A B→  (15)
 
the simplest form of the production rate of species A is 
 

( )A A Bn k c cπ = − −K  (16)
 
c stands for the concentration, and k is a constant for this first order reaction. Note how this form 
follows from our intuitive model that uses the chemical potential difference as the driving force of the 
reaction. We simply linearize the expression for the chemical potential difference for conditions near 
equilibrium. If we use the equilibrium condition (eq) as the reference point for expressing the potentials, 
we have 

 

B A
B A

B A

-1A B A B B

A B A B A

ln ln

ln 1 1

eq eq
eq eq

eq eq

eq eq

c cRT RT
c c

c c c c cRT RT RT
c c c c c

μ μ μ
⎛ ⎞ ⎛ ⎞

Δ = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ≈ − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
K

 (17)

 
We can assume the production rate πnA to be proportional to the concentration of the species A. This 
finally leads to an expression of the form 
 

( )' ' -1 B
A A A A B

A

1n
ck c k c RT k c c
c

π μ
⎛ ⎞

= Δ = − = − −⎜ ⎟
⎝ ⎠
K K  (18)
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The result is the same as the typical form found in Eq.(16). This leads to an interesting question of the 
proper form of a reaction rate in a reaction such as the one discussed here. Since the standard form 
known from kinetics and our expression are the same near equilibrium, they cannot both hold far from 
equilibrium. A general decision as to the proper form cannot be made, however (Cukrowski and 
Kolbus, 2005). We know that Eq. (16) may not hold in general - sometimes nonlinear expressions must 
be used. So, a discussion whether or not a reaction is proportional to the difference of the chemical 
potential is pointless - it depends on the concrete case. All we can say is that, in general, constitutive 
laws for reaction rates and transports are nonlinear. Linear results are special cases. As we know, the 
same is true in electricity or fluids, i.e., characteristic relations for charge and fluid transports are 
nonlinear in general. The example of mutarotation of D-glucose can be satisfactorily dealt with by using 
the linear form with respect to the chemical potential difference.  
 
SUMMARY AND OUTLOOK 
 
We have demonstrated here that a simple chemical reaction such as mutarotation of D-glucose can be 
successfully modeled using comparisons with electrical, hydraulic, mechanical, or thermal dynamical 
processes. Analogical reasoning suggests that the process (quantified in terms of a reaction rate) should 
depend upon a kind of driving force. In the case of fluids, electricity, heat, or motion, the driving force 
is a potential difference. The well known chemical potential serves a role analogous to pressure, electric 
potential, temperature, or speed, and the chemical potential difference of two species serves the role of 
the driving force of the reaction between the substances. It seems to us that learning in chemistry and 
biology - both at high school and in introductory college courses - would greatly profit from an 
approach that makes use of direct system-dynamics modeling. As we have shown, analogical reasoning 
is at the core of SD modeling, i.e., different processes are represented by the same formal structures. In 
other words, our approach allows us to integrate not only different fields of physics, but also 
phenomena that go beyond physics proper, such as chemistry and biology. This can create a unity of 
subjects that are part of secondary education to an extent not normally seen in our schools. Since 
modeling commonly calls for experimental verification, this may well lead to more and stronger 
quantitative activities in the teaching of chemistry and biology (D’Anna, 2006). In fact, driven by 
modern computer technology and data acquisition, we have already seen a growth of experimental 
activities in the sciences ranging from physics through chemistry and biology all the way to applications 
such as physiology and environmental science. We believe that these activities would profit greatly 
from being supported by explicit system-dynamics modeling. 
 
REFERENCES 
 
Carnot, S. (1824). Réflexions sur la puissance motrice du feu. Édition critique avec Introduction et 
Commentaire, augmentée de documents d’archives et de divers manuscrits de Carnot, Paris: Librairie 
philosophique J. Vrin (1978).  
 
Cukrowski, A. S. and Kolbus, A. (2005). On validity of linear phenomenological nonequilibrium 
thermodynamics equations in chemical kinetics. Acta Physica Polonica B, 36(5), 1485-1507. 
 
D’Anna, M. (2006). Modeling in the Classroom. Proceedings of the GIREP Conference August 20-25, 
2006, Amsterdam. 
 
Dubrunfaut, A. P. (1846). Note sur quelques phénomènes rotatoires et sur quelques propriéteés des 
sucres. Compt. Rend., 23, 38. 
 
Fuchs, H. U. (1996). The Dynamics of Heat, Springer-Verlag, New York. 
 
Fuchs, H. U. (2006). System Dynamics Modeling in Fluids, Electricity, Heat, and Motion. Proceedings 
of the GIREP Conference August 20-25, 2006, Amsterdam. 



 10

Fuchs, H. U. (2007). From Image Schemas to Dynamical Models in Fluids, Electricity, Heat, and 
Motion. An Essay on Physics Education Research. Department of Physics, Zurich University of 
Applied Sciences at Winterthur, Switzerland. 
 
Lowry, H. T. (1899). Studies of the terpenes and allied compounds. Nitrocamphor and its derivatives. 
IV Nitrocamphor as an example of dynamic isomerism, J. Chem. Soc, 75, 211. 
 
Pasteur, L. (1848). Sur les relations qui peuvent exister entre la forme cristalline, la composition 
chimique, et le sens de la polarisation rotatoire, Ann. Chim, 24, 442-459. 
 
Pigman, W. and Isbell, H. S. (1968).   Mutarotation of sugars in solution, Part 1 in Advan. Carbohydr. 
Chem, 23, 11-57, 1968, part II in Advan. Carbohydr. Chem Biochem, 1, 13. 
 
Rasiel, Y. and Freeman, W. A. (1970). Definition of Reaction Rate and the Steady State Assumption, J. 
Chem. Educ., 47(2) 159-160. 
 
The Merck Index (14th edition), (2006). 
 
 
Michele D’Anna 
Alta Scuola Pedagogica di Locarno 
6600 Locarno, Switzerland 
Email: danna@liceolocarno.ch 
 
Hans U. Fuchs 
Department of Physics and Mathematics 
Zurich University of Applied Sciences at Winterthur 
8401 Winterthur, Switzerland 
Email: hans.fuchs@zhaw.ch 
 
Paolo Lubini 
Alta Scuola Pedagogica di Locarno 
6600 Locarno, Switzerland 
Email: plubini@bluewin.ch 
 
 
 


