Show simple item record

dc.contributor.authorΔέρβος, Δημήτρηςel_GR
dc.contributor.authorΕυαγγελίδης, Γεώργιοςel_GR
dc.contributor.authorΟυγιάρογλου, Στέφανοςel_GR
dc.contributor.authorDervos, Dimitrisen
dc.contributor.authorEvangelidis, Georgiosen
dc.contributor.authorOugiaroglou, Stefanosen
dc.coverage.spatialGR - Κωen
dc.date.available2014-02-03T08:33:02Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/10797/13749en
dc.descriptionΠεριέχει το πλήρες κείμενοel_GR
dc.description.abstractThe k-Nearest Neighbor (k-NN) classification algorithm is one of the most widely-used lazy classifiers because of its simplicity and ease of implementation. It is considered to be an effective classifier and has many applications. However, its major drawback is that when sequential search is used to find the neighbors, it involves high computational cost. Speeding-up k-NN search is still an active research field. Hwang and Cho have recently proposed an adaptive cluster-based method for fast Nearest Neighbor searching. The effectiveness of this method is based on the adjustment of three parameters. However, the authors evaluated their method by setting specific parameter values and using only one dataset. In this paper, an extensive experimental study of this method is presented. The results, which are based on five real life datasets, illustrate that if the parameters of the method are carefully defined, one can achieve even better classification performance.en
dc.language.isoengen
dc.relation.ispartofSymposium on Information and Knowledge Managementen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.source1rd International Conference on Integrated Informationen
dc.titleAn Extensive Experimental Study on the Cluster-based Reference Set Reduction for Speeding-up the k-NN Classifieren
dc.typeConference Objecten
dc.subject.uncontrolledtermClusteringen
dc.subject.uncontrolledtermK-NN classificationen
dc.subject.uncontrolledtermData reductionen
dc.subject.uncontrolledtermScalabilityen
dc.subject.JITAΔιαχείριση υπηρεσιών, λειτουργιών και τεχνικών πληροφόρησης, Ανάλυση περιεχομένου, σύνταξη σύνοψης, ευρετηρίαση, ταξινόμησηel_GR
dc.subject.JITAInformation treatment for information services, Information functions and techniques, Content analysis, abstracting, indexing, classificationen
dc.contributor.conferenceorganizer2nd AMICUS Workshopen
dc.contributor.conferenceorganizerMednet Hellas, The Greek Medical Networken
dc.contributor.conferenceorganizerNational And Kapodistrian University of Athensen
dc.contributor.conferenceorganizerUniversity of Peloponneseen
dc.contributor.conferenceorganizerTechnological educational Institute of Athensen
dc.contributor.conferenceorganizerEmerald Group Publishing Limiteden
dc.identifier.JITAIBen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record